Advertisement

Automation and Remote Control

, Volume 72, Issue 1, pp 129–140 | Cite as

Modeling population dynamics under the influence of harmful substances on the individual reproduction process

  • N. V. Pertsev
  • G. E. Tsaregorodtseva
Control in Biological Systems and Medicine

Abstract

We present a mathematical model of a population developing while consuming polluting substances that negatively affect individual reproduction. We describe equations of the model and study the properties of model solutions, including existence and stability of equilibrium points. We give the results of a numerical experiment that shows that it is possible to control the population size by changing the rate with which polluting substances are introduced into the environment.

Keywords

Population Size Equilibrium Point Remote Control Asymptotic Stability Harmful Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poluektov, R.A., Pykh, Yu.A., and Shvytov, I.A., Dinamicheskie modeli ekologicheskikh sistem (Dynamic Models of Ecological Systems), Leningrad: Gidrometeoizdat, 1980.Google Scholar
  2. 2.
    Fedorov, V.D. and Gil’manov, T.G., Ekologiya (Ecology), Moscow: Mosk. Gos. Univ., 1980.Google Scholar
  3. 3.
    Svirezhev, Yu.M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii (Nonlinear Waves, Dissipative Structures, and Catastrophes in Ecology), Moscow: Nauka, 1987.Google Scholar
  4. 4.
    Krestin, S.V. and Rozenberg, G.S., One Mechanism of the Flowering of Water in a Plain-Type Reservoir, Biophysics, 1996, vol. 41, no. 3, pp. 650–654.Google Scholar
  5. 5.
    Il’ichev, V.G., Delta Functions and the Investigation of Volterra Ecological Models in a Changing Environment, Izv. Vyssh. Uchebn. Zaved., Mat., 1998, vol. 42, no. 4, pp. 23–33.MathSciNetGoogle Scholar
  6. 6.
    Abrosov, N.S., Ecological Factors and the Mechanisms of Forming the Species Diversity in Ecosystems and the Problem of Species Compatibility, in Ekologiya v Rossii na rubezhe XXI v (Ecology in Russia on the Turn of the XXI Century), Moscow: Nauchnyi Mir, 1999, pp. 54–69.Google Scholar
  7. 7.
    Bibik, Yu.V., Popov, S.V., and Sarancha, D.A., Neavtonomnye matematicheskie modeli ekologicheskikh sistem (Non-autonomous Mathematical Models of Ecological Systems), Moscow: Vychisl. Tsentr Ross. Akad. Nauk, 2004.Google Scholar
  8. 8.
    Novosel’tsev, V.N., Natural Organism Technologies and Polonium-210 Poisoning, in Proc. of the 4th International Conference on Control Problems, Proc. of the Institute of Control Sciences of the RAS, 2009, section S.2 “Control theory in interdisciplinary medical-biological studies,” pp. 884–892.Google Scholar
  9. 9.
    Pichugina, A.N., An Integrodifferential Model of a Population under the Effects of Pollutants, Sib. Zh. Ind. Mat., 2004, vol. 7, no. 4, pp. 130–140.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Pertsev, N.V., Tsaregorodtseva, G.E., and Pichugina, A.N., Stability Analysis for Equilibrium Points of One Model of Population Dynamics, Vestn. Omsk. Univ., 2009, no. 2, pp. 46–49.Google Scholar
  11. 11.
    Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Nauka, 1974.Google Scholar
  12. 12.
    Krasnosel’skii, M.A., Polozhitel’nye resheniya operatornykh uravnenii (Positive Solutions of Operator Equations), Moscow: Fizmatgiz, 1962.Google Scholar
  13. 13.
    Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., et al., Priblizhennoe reshenie operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.Google Scholar
  14. 14.
    Barbashin, E.A., Vvedenie v teoriyu ustoichivosti (Introduction to Stability Theory), Moscow: Nauka, 1967.Google Scholar
  15. 15.
    Obolenskii, A.Yu., On the Stability of Solutions for Autonomous Vazhevski Systems with Delays, Ukr. Mat. Zh., 1983, vol. 35, no. 5, pp. 574–579.MathSciNetGoogle Scholar
  16. 16.
    D’eri, I. and Pertsev, N.V., On the Stability of Equilibrium Points for Functional-Differential Equations with Delays That Possess the Mixed Monotonicity Property, Dokl. Akad. Nauk SSSR, 1987, vol. 297, no. 1, pp. 23–25.Google Scholar
  17. 17.
    Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1966. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.Google Scholar
  18. 18.
    Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equations, New York: McGraw-Hill, 1955.Google Scholar
  19. 19.
    D’yakonov, V.P., Matlab 6/6.1/6.5 + Simulink 4/5 v matematike i modelirovanii. Polnoe rukovodstvo pol’zovatelya (Matlab 6/6.1/6.5 + Simulink 4/5 in Mathematics and Modeling. A Complete User’s Guide), Moscow: SOLON-Press, 2003.Google Scholar
  20. 20.
    Romanovskii, Yu.M., Stepanova, N.V., and Chernavskii, D.S., Matematicheskaya biofizika (Mathematical Biophysics), Moscow: Nauka, 1984.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. V. Pertsev
    • 1
  • G. E. Tsaregorodtseva
    • 1
  1. 1.Omsk Affiliated Institute of Mathematics, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations