Advertisement

Automation and Remote Control

, Volume 72, Issue 1, pp 111–118 | Cite as

Compensation of harmonic disturbances in nonlinear plants with parametric and functional uncertainty

  • A. A. Bobtsov
  • A. S. Kremlev
  • A. A. Pyrkin
Adaptive and Robust Systems

Abstract

Methods of compensation of harmonic disturbances from the measurements of the output variable are developed for nonlinear plants with parametric and functional uncertainty. A new control algorithm is proposed, which outperforms known methods in simplicity of implementation and some other characteristics.

Keywords

Remote Control Nonlinear Plant Linear Plant Sinusoidal Disturbance Unknown Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marino, R., Santosuosso, G.L., and Tomei, P., Robust Adaptive Compensation of Biased Sinusoidal Disturbances with Unknown Frequency, Automatica, 2003, vol. 39, pp. 1755–1761.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bobtsov, A.A. and Kremlev, A.S., Adaptive Compensation of Biased Sinusoidal Disturbances with Unknown Frequency, in Proc. 16th IFAC World Congress, Prague, Czech Republic, 2005.Google Scholar
  3. 3.
    Bobtsov, A.A. and Kremlev, A.S., An Algorithm of Compensation of Unknown Sinusoidal Disturbance in Linear Non-minimum Phase Plants, Mekhatron. Avtomatiz. Upravlen., 2008, no. 10, pp. 14–17.Google Scholar
  4. 4.
    Nikiforov, V.O., Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive and Robust Control with Disturbance Compensation), St. Petersburg: Nauka, 2003.Google Scholar
  5. 5.
    Bobtsov, A.A., Output Control Algorithm with Compensation of Biased Harmonic Disturbances, Autom. Remote Control, 2008, no. 8, pp. 1289–1296.Google Scholar
  6. 6.
    Bobtsov, A.A., Adaptive Output Control with Compensation of Biased Harmonic Disturbances, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2009, no. 1, pp. 45–48.Google Scholar
  7. 7.
    Bobtsov, A.A., A Note to Output Feedback Adaptive Control for Uncertain System with Static Nonlinearity, Automatica, 2005, no. 12, pp. 1277–1280.Google Scholar
  8. 8.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.Google Scholar
  9. 9.
    Fradkov, A.L., Synthesis of Adaptive System of Stabilization of Linear Dynamic Plants, Autom. Remote Control, 1974, no. 12, pp. 1960–1966.Google Scholar
  10. 10.
    Bobtsov, A.A. and Nikolaev, N.A., Fradkov Theorem-based Design of the Control of Nonlinear Systems with Functional and Parametric Uncertainties Autom. Remote Control, 2005, no. 1, pp. 108–118.Google Scholar
  11. 11.
    Aranovskii, S.V., Bobtsov, A.A., and Pyrkin, A.A., Adaptive Observer of an Unknown Sinusoidal Output Disturbance for Linear Plants, Autom. Remote Control, 2009, no. 11, pp. 1862–1870.Google Scholar
  12. 12.
    Aranovskii, S.V., Bardov, V.M., Bobtsov, A.A, et al., Observer Design in the Presence of Disturbances Affecting the Measurements of the Plant Output, Izv. Vyssh. Uchebn. Zaved., Priborostroenie, 2009, no. 11, pp. 28–32.Google Scholar
  13. 13.
    Pyrkin, A.A., Adaptive Algorithm to Compensate Parametrically Uncertain Biased Disturbance of a Linear Plant with Delay in the Control Channel, Autom. Remote Control, 2010, no. 8, pp. 1562–1577.Google Scholar
  14. 14.
    Pyrkin, A., Smyshlyaev, A., Bekiaris-Liberis, N., and Krstic, M., Rejection of Sinusoidal Disturbance of Unknown Frequency for Linear System with Input Delay, in Am. Control Conf., Baltimore, USA, 2010.Google Scholar
  15. 15.
    Pyrkin, A., Smyshlyaev, A., Bekiaris-Liberis, N., and Krstic, M., Output Control Algorithm for Unstable Plant with Input Delay and Cancelation of Unknown Biased Harmonic Disturbance, in Proc. 9th IFAC Workshop on Time Delay Systems, Prague, Czech Republic, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. A. Bobtsov
    • 1
    • 2
  • A. S. Kremlev
    • 1
  • A. A. Pyrkin
    • 1
  1. 1.Mechanics and OpticsSt.Petersburg State University of Information TechnologiesSt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations