Skip to main content
Log in

Minimizing total weighted completion time with uncertain data: A stability approach

  • Scheduling Problems on a Single Machine
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A single-machine scheduling problem is investigated provided that the input data are uncertain: The processing time of a job can take any real value from the given segment. The criterion is to minimize the total weighted completion time for the n jobs. As a solution concept to such a scheduling problem with an uncertain input data, it is reasonable to consider a minimal dominant set of job permutations containing an optimal permutation for each possible realization of the job processing times. To find an optimal or approximate permutation to be realized, we look for a permutation with the largest stability box being a subset of the stability region. We develop a branch-and-bound algorithm to construct a permutation with the largest volume of a stability box. If several permutations have the same volume of a stability box, we select one of them due to one of two simple heuristics. The efficiency of the constructed permutations (how close they are to a factually optimal permutation) and the efficiency of the developed software (average CPU-time used for an instance) are demonstrated on a wide set of randomly generated instances with 5 ≤ n ≤ 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinedo, M., Scheduling: Theory, Algorithms, and Systems, New Jersey: Prentice Hall, 2002.

    MATH  Google Scholar 

  2. Aytug, H., Lawley, M.A., McKay, K., Mohan, S., and Uzsoy, R., Executing Production Schedules in the Face of Uncertainties: A Review and Some Future Directions, Eur. J. Oper. Res., 2005, vol. 161, pp. 86–110.

    Article  MATH  MathSciNet  Google Scholar 

  3. Sabuncuoglu, I. and Goren, S., Hedging Production Schedules Against Uncertainty in Manufacturing Environment with a Review of Robustness and Stability Research, Int. J. Comput. Integrated Manufacturing, 2009, vol. 22, no. 2, pp. 138–157.

    Article  Google Scholar 

  4. Daniels, R.L. and Kouvelis, P., Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production, Manage. Sci., 1995, vol. 41, no. 2, pp. 363–376.

    Article  MATH  Google Scholar 

  5. Kouvelis, P. and Yu, G., Robust Discrete Optimization and Its Applications, Boston: Kluwer, 1997.

    MATH  Google Scholar 

  6. Yang, J. and Yu, G., On the Robust Single Machine Scheduling Problem, J. Combinat. Optim., 2002, vol. 6, pp. 17–33.

    Article  MATH  MathSciNet  Google Scholar 

  7. Lai, T.-C., Sotskov, Y.N., Sotskova, N., and Werner, F., Optimal Makespan Scheduling with Given Bounds of Processing Times, Math. Comput. Model., 1997, vol. 26, pp. 67–86.

    MATH  MathSciNet  Google Scholar 

  8. Lai, T.-C. and Sotskov, Y.N., Sequencing with Uncertain Numerical Data for Makespan Minimization, J. Oper. Res. Soc., 1999, vol. 50, pp. 230–243.

    MATH  Google Scholar 

  9. Sotskov, Y.N. and Sotskova, N.Y., Teoriya raspisanii: sistemy s neopredelennymi chislovymi parametrami (Scheduling Theory: Systems with Uncertain Numerical Parameters), Minsk: Natl. Acad. Sci. Belarus, United Inst. of Informatics Problems, 2004.

    Google Scholar 

  10. Matsveichuk, N.M., Sotskov, Y.N., Egorova, N.G., and Lai, T.-C., Schedule Execution for Two-Machine Flow-Shop with Interval Processing Times, Math. Comput. Modelling, 2009, vol. 49, nos. 5–6, pp. 991–1011.

    Article  MATH  MathSciNet  Google Scholar 

  11. Sotskov, Y.N., Egorova, N.G., and Lai, T.-C., Minimizing Total Weighted Flow Time of a Set of Jobs with Interval Processing Times, Math. Comput. Modelling, 2009, vol. 50, pp. 556–573.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lai, T-C, Sotskov, Y.N., Sotskova, N.Y., and Werner, F., Mean Flow Time Minimization with Given Bounds of Processing Times, Eur. J. Oper. Res., 2004, vol. 159, no. 3, pp. 558–573.

    Article  MATH  MathSciNet  Google Scholar 

  13. Sotskov, Y.N., Wagelmans, A.P.M., and Werner, F., On the Calculation of the Stability Radius of an Optimal or an Approximate Schedule, Ann. Oper. Res., 1998, vol. 83, pp. 213–252.

    Article  MATH  MathSciNet  Google Scholar 

  14. Sotskov, Y.N., Sotskova, N.Y., and Werner, F., Stability of an Optimal Schedule in a Job Shop, Omega, 1997, vol. 25, no. 4, pp. 397–414.

    Article  Google Scholar 

  15. Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G., Optimization and Approximation in Deterministic Sequencing and Scheduling. A Survey, Ann. Discr. Math., 1976, vol. 5, pp. 287–326.

    Article  MathSciNet  Google Scholar 

  16. Smith, W.E., Various Optimizers for Single-Stage Production, Nav. Res. Logist. Quarterly, 1956, vol. 3, no. 1, pp. 59–66.

    Article  Google Scholar 

  17. Kasperski, A. and Zielinski, P., A 2-approximation Algorithm for Interval Data Minmax Regret Sequencing Problems with Total Flow Time Criterion, Oper. Res. Lett., 2008, vol. 36, pp. 343–344.

    Article  MATH  MathSciNet  Google Scholar 

  18. Montemanni, R., A Mixed Integer Programming Formulation for the Total Flow Time Single Machine Robust Scheduling Problem with Interval Data, J. Math. Model. Algorith., 2007, vol. 6, pp. 287–296.

    Article  MATH  MathSciNet  Google Scholar 

  19. Sotskov, Y.N., Dolgui, A., and Portmann, M.-C., Stability Analysis of Optimal Balance for Assembly Line with Fixed Cycle Time, Eur. J. Oper. Res., 2006, vol. 168, no. 3, pp. 783–797.

    Article  MATH  MathSciNet  Google Scholar 

  20. Sotskov, Y.N., Stability of an Optimal Schedule, Eur. J. Oper. Res., 1991, vol. 55, pp. 91–102.

    Article  MATH  Google Scholar 

  21. Sotskov, Y.N., Tanaev, V.S., and Werner, F., Stability Radius of an Optimal Schedule: A Survey and Recent Developments, in Industr. Appl. Combinat. Optim., Yu, G., Ed., Boston: Kluwer, 1998, pp. 72–108.

    Google Scholar 

  22. Sotskova, N.Y. and Tanaev, V.S., About the Realization of an Optimal Schedule with Operation Processing Times under Conditions of Uncertainty, Dokl. Natl. Akad. Nauk Belarusi, 1998, vol. 42, no. 5, pp. 8–12.

    MATH  MathSciNet  Google Scholar 

  23. Allahverdi, A. and Sotskov, Y.N., Two-machine Flowshop Minimum-length Scheduling Problem with Random and Bounded Processing Times, Int. Transactions Oper. Res., 2003, vol. 10, pp. 65–76.

    Article  MATH  MathSciNet  Google Scholar 

  24. Allahverdi, A., Aldowaisan, T., and Sotskov, Y.N., Two-machine Flowshop Scheduling Problem to Minimize Makespan or Total Completion Time with Random and Bounded Setup Times, Int. J. Math. Math. Sci., 2003, vol. 39, pp. 2475–2486.

    Article  MathSciNet  Google Scholar 

  25. Ng, C.T., Matsveichuk, N.M., Sotskov, Y.N., and Cheng, T.C.E., Two-machine Flow-shop Minimumlength Scheduling with Interval Processing Times, Asia-Pacific J. Oper. Res., 2009, vol. 26, no. 6, pp. 1–20.

    MathSciNet  Google Scholar 

  26. Sotskov, Y.N., Allahverdi, A., and Lai, T.-C., Flowshop Scheduling Problem to Minimize Total Completion Time with Random and Bounded Processing Times, J. Oper. Res. Soc., 2004, vol. 55, pp. 277–286.

    Article  MATH  Google Scholar 

  27. Computer and Job-Shop Scheduling Theory, Coffman, E.G., Ed., New York: Wiley, 1976.

    MATH  Google Scholar 

  28. Sotskov, Y.N. and Lai, T.-C., Minimizing Total Weighted Completion Time under Uncertainty Using Stability Box and Dominance, Comput. Oper. Res. (submitted).

  29. Emelichev, V.A., Girlich, E.N., Nikulin, Y.V., and Podkopaev, D.P., Stability and Regularization Radius of Vector Problems of Integer Linear Programming. Optimization, 2002, vol. 51, no. 4, pp. 645–676.

    Article  MATH  MathSciNet  Google Scholar 

  30. Emelichev, V.A., Krichko, V.N., and Nikulin, Y.V., The Stability Radius of an Efficient Solution in Mimimax Boolean Programming Problem. Control Cybernet., 2004, vol. 33, no. 1, pp. 127–132.

    MATH  MathSciNet  Google Scholar 

  31. Emelichev, V.A., Kuz’min, K.G., and Leonovich, A.M., Stability in the Combinatorial Vector Optimization Problems. Autom. Remote Control, 2004, vol. 65, no. 2, pp. 227–240.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.N. Sotskov, N.G. Egorova, F. Werner, 2010, published in Avtomatika i Telemekhanika, 2010, No. 10, pp. 26–49.

The research of the first author was supported by Belorussian Republican Foundation for Fundamental Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotskov, Y.N., Egorova, N.G. & Werner, F. Minimizing total weighted completion time with uncertain data: A stability approach. Autom Remote Control 71, 2038–2057 (2010). https://doi.org/10.1134/S0005117910100048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117910100048

Keywords

Navigation