Skip to main content
Log in

Stabilizability of the linear algebro-differential one-input control systems

  • Determinate Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to the controllable system of ordinary linear differential equations with the matrix at the derivative of the desired vector function that is identically degenerate in the domain of definition. For the one-input systems, the questions of stabilizability and solvability of the control problem by the Lyapunov indices were studied for the stationary and nonstationary cases. Analysis was based on the assumptions providing existence of the so-called “equivalent form” where the “algebraic” and “differential” parts are separated. An arbitrarily high index of insolvability and variable rank of the matrix at the derivative were admitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smirnov, E.Ya., Nekotorye zadachi matematicheskoi teorii upravleniya (Some Problems of the Mathematical Control Theory), Leningrad: Leningr. Gos. Univ., 1981.

    Google Scholar 

  2. Wolovich, W.A., On the Stabilization of Controllable Systems, IEEE Trans. Automat. Control, 1968, vol. AC-13, no. 5, pp. 569–572.

    Article  MathSciNet  Google Scholar 

  3. Gaishun, I.V., Canonical Forms, Control of Lyapunov Indices, and Stabilizability of Nonstationary Linear Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1998, no. 6, pp. 24–32.

  4. Tonkov, E.L., Stabilization and Global Controllability of the Almost-periodic Linear System, Diff. Uravn., 1989, vol. 15, no. 4, pp. 758–759.

    Google Scholar 

  5. Tonkov, E.L., Criterion for Uniform Controllability and Stabilization of the Recurrent Linear System, Diff. Uravn., 1979, vol. 15,no. 10, pp. 1804–1813.

    MATH  MathSciNet  Google Scholar 

  6. Gaishun, I.V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem (Introduction to the Theory of Nonstationary Linear Systems), Minsk: Inst. Mat. NAN Belarusi, 1999.

    MATH  Google Scholar 

  7. Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer, 1979. Translated under the title Linei’nye mnogomernye sistemy upravleniya: geometricheskii podkhod, Moscow: Nauka, 1980.

    MATH  Google Scholar 

  8. Shcheglova, A.A., Rearrangement of the Linear Algebro-Differential System in Equivalent Form, in Proc. IX Chetaev Int. Conf. “Analytical Mechanics, Stability, and Motion Control,” Irkutsk: IDSTU SO RAN, 2007, vol. 5, pp. 298–307.

    Google Scholar 

  9. Campbell, S.L. and Petzold, L.R., Canonical Forms and Solvable Singular Systems of Differential Equations, SIAM J. Alg. Disc. Method., 1983, no. 4, pp. 517–512.

  10. Chistyakov, V.F. and Shcheglova, A.A., Izbrannye glavy teorii algebro-differentsial’nykh sistem (Theory of Algebro-Differential Systems: Selected Chapters), Novosibirsk: Nauka, 2003.

    MATH  Google Scholar 

  11. Campbell, S.L. and Terrell, W.J., Observability of Linear Time Varying Descriptor Systems, in CRSC Technical Report 072389-01, Center for Research in Scientific Computatuon, North Carolina Univ., 2003.

  12. Kunkel, P. and Mehrmann, V., Canonical Forms for Linear Differential-Algebraic Equations with Variable Coefficients, J. Comput. Appl. Math., 1995, no. 56, pp. 225–251.

  13. Chistyakov, V.F., Algebro-differentsial’nye operatory s konechnomernym yadrom (Algebro-Differential Operators with Finite-dimensional Kernel), Novosibirsk: Nauka, 1996.

    MATH  Google Scholar 

  14. Brenan, K.E., Campbell, S.L., and Petzold, L.D., Numerical Solution of Initial-value Problems in Differential-Algebraic Equations (Classics in Applied Mathematics; 14), Philadelphia: SIAM, 1996.

    Google Scholar 

  15. Dai, L., Singular Control Systems, in Lecture Notes in Control and Information Sciences, Berlin: Springer, 1989, vol. 118.

    Google Scholar 

  16. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1988. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.

    MATH  Google Scholar 

  17. Mehrmann, V., The Autonomous Linear Quadratic Control Problem, in Lecture Notes in Control and Information Sciences, Berlin: Springer, 1991, vol. 163.

    Google Scholar 

  18. Varga, A., On Stabilization Methods of Descriptor Systems, Syst. & Control Lett., 1995, vol. 24, pp. 133–138.

    Article  MATH  Google Scholar 

  19. Varga, A., A Numerically Reliable Approach to Robust Pole Assignment for Descriptor Systems, Future Generat. Comput. Syst., 2003, vol. 19, pp. 1221–1230.

    Article  Google Scholar 

  20. Kautsky, J., Nichols, N.K., and Chu, E.K.-W., Robust Pole Assignment in Singular Control Systems, Lin. Algebra. Appl., 1989, vol. 121, pp. 653–658.

    Article  MathSciNet  Google Scholar 

  21. Bunse-Gerstner, A., Mehrmann, V., and Nichols, N.K., Regularization of Descriptor System by Derivative and Proportional State Feedback, SIAM J. Matrix Anal. Appl., 1992, vol. 13, pp. 46–67.

    Article  MATH  MathSciNet  Google Scholar 

  22. Duan, G.-R. and Patton, R.J., Robust Pole Assignment in Descriptor Systems via Proportional Plus Partial Derivative State Feedback, Int. J. Control, 1999, vol. 72, no. 13, pp. 1193–1203.

    Article  MATH  MathSciNet  Google Scholar 

  23. Duan, G.-R. and Huang, L., Robust Pole Assignment in Descriptor Second-order Dynamical Systems, Acta Automat. Sinica, 2007, vol. 33,no. 8, pp. 888–892.

    MathSciNet  Google Scholar 

  24. Bunse-Gerstner, A., Mehrmann, V., and Nichols, N.K., Regularization of Descriptor System by Output Feedback, IEEE Trans. Automat. Control, 1994, vol. 39, pp. 1742–1748.

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, D. and Yu, R., Robustness Analysis and Feedback Stabilization of Uncertain Singular Systems, in 5th Asian Control Conf., 2004, vol. 2, pp. 888–893.

    Google Scholar 

  26. Xu, S. and Lam, J., Robust Stability and Stabilization of Discrete-Time Singular Systems: An Equivalent Characterization, IEEE Trans. Automat. Control. Int. J. Control, 2004, vol. 49, pp. 568–574.

    Article  MathSciNet  Google Scholar 

  27. Ikeda, M. and Uezato, E., Stability and Stabilizability Conditions for Linear Time-Varying Descriptor Systems, Seigyo Riron Shinpojiumu, 2006, vol. 35, pp. 87–90.

    Google Scholar 

  28. Takaba, K., Robust H 2 Control Descriptor System with Time Varying Uncertainty, Int. J. Control, 1998, vol. 71, no. 4, pp. 559–579.

    Article  MATH  MathSciNet  Google Scholar 

  29. Ji, X.-F., Yang, Z.-B., Sun, Y.-K., and Su, H.-Y., Robust Stabilization for Linear Time-varying Uncertain Periodic Descriptor Systems, Acta Automat. Sinica, 2008, vol. 34,no. 9, pp. 1219–1220.

    Article  MathSciNet  Google Scholar 

  30. Mehrmann, V. and Stykel, T., Descriptor Systems: A General Mathematical Framework for Modelling, Simulation and Control, Automatisierungstechnik, 2006, vol. 8, pp. 405–415.

    Article  Google Scholar 

  31. Yip, E.L. and Sincovec, R.F., Solvability, Controllability and Observability of Continuous Descriptor Systems, IEEE Trans. Automat. Control, 1981, vol. AC-26, pp. 702–707.

    Article  MathSciNet  Google Scholar 

  32. Campbell, S.L., Nichols, N.K., and Terrell, W.J., Duality, Observability, and Controllability for Linear Time-varying Descriptor Systems, Circ. Syst. Sign. Proc., 1991, vol. 10, pp. 455–470.

    Article  MATH  MathSciNet  Google Scholar 

  33. Cobb, D.J., Controllability, Observability, and Duality in Singular Systems, IEEE Trans. Automat. Control, 1984, vol. AC-29,no. 12, pp. 1076–1082.

    Article  MathSciNet  Google Scholar 

  34. Ilchmann, A. and Mehrmann, V., A Behavioural Approach to Linear Time-varying Systems. II. Descriptor Systems, SIAM J. Control Optim., 2005, vol. 44, pp. 1748–1765.

    Article  MathSciNet  Google Scholar 

  35. Ilchmann, A. and Mehrmann, V., A Behavioural Approach to Linear Time-Varying Systems. I. General Theory, SIAM J. Control Optim., 2005, vol. 44, pp. 1725–1747.

    Article  MathSciNet  Google Scholar 

  36. Shcheglova, A.A., Controllability of Nonlinear Algebraic Differential Systems Autom. Remote Control, 2008, no. 10, pp. 1700–1722.

  37. Leonov, G.A., Teoriya upravleniya (Control Theory), St. Petersburg: S.-Peterburg. Gos. Univ., 2006.

    Google Scholar 

  38. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Stability Theory), Moscow: Nauka, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Shcheglova, 2010, published in Avtomatika i Telemekhanika, 2010, No. 9, pp. 33–56.

This work was supported by the Siberian Branch of the Russian Academy of Sciences (Integration project no. 85 and Interdisciplinary Integration project no. 107).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcheglova, A.A. Stabilizability of the linear algebro-differential one-input control systems. Autom Remote Control 71, 1770–1792 (2010). https://doi.org/10.1134/S0005117910090031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117910090031

Keywords

Navigation