Automation and Remote Control

, Volume 68, Issue 5, pp 922–933 | Cite as

Modeling of industrial problems on high-performance polyprocessor computing systems

  • B. N. Chetverushkin
Topical Issue


Issues are considered that are related to the use of modern high-performance computer systems for the solution of problems of science and engineering. Special attention is given to the relation of technical possibilities, including the means of communication, computational algorithms, and auxiliary software tools. Examples are given of the use of high-performance systems for modeling of complex problems.

PACS number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sahy, J. and Heavey, K.R., High Performance Parallel CFD Simulation of Projectiles with Flow Control, in Parallel Comput. Fluid Dynamics. Multidisciplin. Appl., Winter, G. et al., Eds., New York: Elsevier, 2005.Google Scholar
  2. 2.
    Chetverushkin, B.N., Gasilov, V.A., Polyakov, S.V., et al., Parallel Software Project GIMM: Numerical Study of Complex CFD Problems, in Parallel Comput. Fluid Dynam. Multidisciplin. Appl., Winter, G. et al., Eds., New York: Elsevier, 2005, pp. 339–344.Google Scholar
  3. 3.
    Chetverushkin, B.N., High-performance Polyprocessor Computing Systems: Problems of Use and Preparation of the Staff, Vest. Ross. Akad. Nauk, 2002, vol. 72, no. 9, pp. 786–794.Google Scholar
  4. 4.
    Chetverushkin, B.N., Kinetic Schemes and High-performance Polyprocessor Computations in Gas Dynamics, Vychisl. Tekhn., 2002, vol. 7, no. 16, pp. 68–89.MathSciNetGoogle Scholar
  5. 5.
    Chetverushkin, B.N., Kineticheskie skhemy i kvazifazodinamicheskaya sistema upravleniya (Kinetic Schemes and the Quasigas-Dynamic System of Equations), Moscow: Maks Press, 2004.Google Scholar
  6. 6.
    Tsutahara, M., Takaoka, N., and Kataoka, N., Lattice Gas and Lattice Boltzmann Methods—New Methods of Computational Fluid Dynamics, Tokyo: Corona Publish, 1999.Google Scholar
  7. 7.
    Succi, S., The Lattice Boltzmann Equation in Fluid Dynamics and Beyond, Oxford: Claredon Press, 2001.Google Scholar
  8. 8.
    Kogan, M.N., Dinamika razryazhennogo gaza (Dynamics of Rarefied Gas), Moscow: Nauka, 1967.Google Scholar
  9. 9.
    Liboff, R.L., Introduction to the Theory of Kinetic Equations, New York: Wiley, 1969. Translated under the title Vvedenie v teoriyu kineticheskogo upravleniya Moscow: Mir, 1974.zbMATHGoogle Scholar
  10. 10.
    Vedenyapin, V.V., Kineticheskie uravneniya Bol’tsmana i Vlasova (Kinetic Boltzmann and Vlasov Equations), Moscow: Fizmatlit, 2001.Google Scholar
  11. 11.
    Harten, A., High Resolution Schemes for Hyperbolic Conservation Laws, J. Comput. Phys., 1983, vol. 49, no. 2, pp. 357–393.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tkhir, A.V., The Method of Advanced Front for Development of Two-Dimensional Unstructured Lattices, in Chislennye metody i prilozheniya (Numerical Methods and Applications), Kuznetsov, Yu.A., Ed., Moscow: IVM Ross. Akad. Nauk, 1995, pp. 151–160.Google Scholar
  13. 13.
    Simon, H.D., Partition of Unstructured Problems for Parallel Processing, Comp. Syst. Eng., 1991, vol. 2, no. 213, pp. 135–148.CrossRefGoogle Scholar
  14. 14.
    Fiedler, M., Eigenvectors of Asyclic Matrices, Czechoslovak Math. J., 1975, vol. 25, no. 24, pp. 607–618.MathSciNetGoogle Scholar
  15. 15.
    Yakubovskii, M.V., The Incremental Algorithm of Decomposition of Graphs, J. Lobachevskii Research Univ., Series “Math. Modeling and Optimal Control,” 2005, issue 1 (28), pp. 243–250.Google Scholar
  16. 16.
    Cebral, J.P., ZFEM: Collaborative Vizualisation for Parallel Multidisciplinary Applications, in Parallel Computational Fluid Dynamics, Emerson, D.R., Ed., New York: Elsevier, 1998, pp. 659–666.Google Scholar
  17. 17.
    Yakubovskii, M.V., Processing of Lattice Data on Distributed Computer Systems, Vopr. Atom. Nauk. Tekhn., Series: Math. Modeling of Physical Processes, 2004, issue 2, pp. 40–53.Google Scholar
  18. 18.
    The Global Project, http:/ Scholar
  19. 19.
    Parallel Computational Fluid Dynamics. Advanced Numerical Methods. Software and Applications, Chetverushkin, B.N. et al., Eds., New York: Elsevier, 2004.zbMATHGoogle Scholar
  20. 20.
    Parallel Computational Fluid Dynamics. New Frontiers and Multidisciplinary Applications, Metsuko, K. et al., Eds., New York: Elsevier, 2003.Google Scholar
  21. 21.
    Chetverushkin, B.N., Gasilov, V.A., Polyakov, S.V., et al., The Package of Applied GIMM Programs for the Solution of Hydrodynamics Problems on Polyprocessor Computing Systems, Mat. Modelir., 2005, vol. 17, no. 6, pp. 58–74.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • B. N. Chetverushkin
    • 1
  1. 1.Institute of Mathematical ModelingRussian Academy of SciencesMoscowRussia

Personalised recommendations