Skip to main content
Log in

Modeling of industrial problems on high-performance polyprocessor computing systems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Issues are considered that are related to the use of modern high-performance computer systems for the solution of problems of science and engineering. Special attention is given to the relation of technical possibilities, including the means of communication, computational algorithms, and auxiliary software tools. Examples are given of the use of high-performance systems for modeling of complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahy, J. and Heavey, K.R., High Performance Parallel CFD Simulation of Projectiles with Flow Control, in Parallel Comput. Fluid Dynamics. Multidisciplin. Appl., Winter, G. et al., Eds., New York: Elsevier, 2005.

    Google Scholar 

  2. Chetverushkin, B.N., Gasilov, V.A., Polyakov, S.V., et al., Parallel Software Project GIMM: Numerical Study of Complex CFD Problems, in Parallel Comput. Fluid Dynam. Multidisciplin. Appl., Winter, G. et al., Eds., New York: Elsevier, 2005, pp. 339–344.

    Google Scholar 

  3. Chetverushkin, B.N., High-performance Polyprocessor Computing Systems: Problems of Use and Preparation of the Staff, Vest. Ross. Akad. Nauk, 2002, vol. 72, no. 9, pp. 786–794.

    Google Scholar 

  4. Chetverushkin, B.N., Kinetic Schemes and High-performance Polyprocessor Computations in Gas Dynamics, Vychisl. Tekhn., 2002, vol. 7, no. 16, pp. 68–89.

    MathSciNet  Google Scholar 

  5. Chetverushkin, B.N., Kineticheskie skhemy i kvazifazodinamicheskaya sistema upravleniya (Kinetic Schemes and the Quasigas-Dynamic System of Equations), Moscow: Maks Press, 2004.

    Google Scholar 

  6. Tsutahara, M., Takaoka, N., and Kataoka, N., Lattice Gas and Lattice Boltzmann Methods—New Methods of Computational Fluid Dynamics, Tokyo: Corona Publish, 1999.

    Google Scholar 

  7. Succi, S., The Lattice Boltzmann Equation in Fluid Dynamics and Beyond, Oxford: Claredon Press, 2001.

    Google Scholar 

  8. Kogan, M.N., Dinamika razryazhennogo gaza (Dynamics of Rarefied Gas), Moscow: Nauka, 1967.

    Google Scholar 

  9. Liboff, R.L., Introduction to the Theory of Kinetic Equations, New York: Wiley, 1969. Translated under the title Vvedenie v teoriyu kineticheskogo upravleniya Moscow: Mir, 1974.

    MATH  Google Scholar 

  10. Vedenyapin, V.V., Kineticheskie uravneniya Bol’tsmana i Vlasova (Kinetic Boltzmann and Vlasov Equations), Moscow: Fizmatlit, 2001.

    Google Scholar 

  11. Harten, A., High Resolution Schemes for Hyperbolic Conservation Laws, J. Comput. Phys., 1983, vol. 49, no. 2, pp. 357–393.

    Article  MATH  MathSciNet  Google Scholar 

  12. Tkhir, A.V., The Method of Advanced Front for Development of Two-Dimensional Unstructured Lattices, in Chislennye metody i prilozheniya (Numerical Methods and Applications), Kuznetsov, Yu.A., Ed., Moscow: IVM Ross. Akad. Nauk, 1995, pp. 151–160.

    Google Scholar 

  13. Simon, H.D., Partition of Unstructured Problems for Parallel Processing, Comp. Syst. Eng., 1991, vol. 2, no. 213, pp. 135–148.

    Article  Google Scholar 

  14. Fiedler, M., Eigenvectors of Asyclic Matrices, Czechoslovak Math. J., 1975, vol. 25, no. 24, pp. 607–618.

    MathSciNet  Google Scholar 

  15. Yakubovskii, M.V., The Incremental Algorithm of Decomposition of Graphs, J. Lobachevskii Research Univ., Series “Math. Modeling and Optimal Control,” 2005, issue 1 (28), pp. 243–250.

  16. Cebral, J.P., ZFEM: Collaborative Vizualisation for Parallel Multidisciplinary Applications, in Parallel Computational Fluid Dynamics, Emerson, D.R., Ed., New York: Elsevier, 1998, pp. 659–666.

    Google Scholar 

  17. Yakubovskii, M.V., Processing of Lattice Data on Distributed Computer Systems, Vopr. Atom. Nauk. Tekhn., Series: Math. Modeling of Physical Processes, 2004, issue 2, pp. 40–53.

  18. The Global Project, http:/www.global.oig/todkit.

  19. Parallel Computational Fluid Dynamics. Advanced Numerical Methods. Software and Applications, Chetverushkin, B.N. et al., Eds., New York: Elsevier, 2004.

    MATH  Google Scholar 

  20. Parallel Computational Fluid Dynamics. New Frontiers and Multidisciplinary Applications, Metsuko, K. et al., Eds., New York: Elsevier, 2003.

    Google Scholar 

  21. Chetverushkin, B.N., Gasilov, V.A., Polyakov, S.V., et al., The Package of Applied GIMM Programs for the Solution of Hydrodynamics Problems on Polyprocessor Computing Systems, Mat. Modelir., 2005, vol. 17, no. 6, pp. 58–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.N. Chetverushkin, 2007, published in Avtomatika i Telemekhanika, 2007, No. 5, pp. 193–205.

This work was supported by the Russian Foundation for Basic Research, projects nos. 04-01-08034 and 06-01-00187.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetverushkin, B.N. Modeling of industrial problems on high-performance polyprocessor computing systems. Autom Remote Control 68, 922–933 (2007). https://doi.org/10.1134/S0005117907050177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117907050177

PACS number

Navigation