Advertisement

Automation and Remote Control

, Volume 68, Issue 5, pp 888–900 | Cite as

Distributed computing by the Monte Carlo method

  • M. A. Marchenko
  • G. A. Mikhailov
Topical Issue

Abstract

Questions of effective parallel realization for some algorithms of the Monte Carlo method are discussed. Parallel modification of the generator of basic pseudorandom numbers uniformly distributed in the unit interval is described. The technique of distributed computing in the personal computer network with the use of the MONC program system worked out by the authors is described.

PACS numbers

02.60.Cb 02.70.-c 02.70.Tt 02.70.Uu 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikhailov, G.A. and Voitishek, A.V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo (Numerical Statistic Simulation. Monte Carlo Methods), Moscow: Akademiya, 2006.Google Scholar
  2. 2.
    Marchenko, M.A., MONC Program System for Distributed Computing by the Monte Carlo Method, Sib. Zh. Vychisl. Mat., 2004, vol. 7, no. 1, pp. 43–55.zbMATHGoogle Scholar
  3. 3.
    The Grid: Blueprint for a New Computing Infrastructure, Foster, I. and Kesselman, C., Eds., Boston: Kaufmann, 2004.Google Scholar
  4. 4.
    Mendes, B. and Pereira, A., Parallel Monte Carlo Driver (PMCD)—A Software Package for Monte Carlo Simulations in Parallel, Comput. Phys. Comm., 2003, vol. 151, pp. 89–95.CrossRefGoogle Scholar
  5. 5.
    Thomasona, M.G., Longtona, R.F., Gregora, J., et al., Simulation of Emission Tomography Using Grid Middleware for Distributed Computing, Comput. Method. Program. Biomed., 2004, vol. 75, pp. 251–258.CrossRefGoogle Scholar
  6. 6.
    Yuasaa, F., Tobimatsub, K., and Kawabata, S., Recent Developments in Parallelization of the Multidimensional Integration Package DICE, Nuclear Instrument. Method. Phys. Res. A, 2006, vol. 559, pp. 306–309.CrossRefGoogle Scholar
  7. 7.
    Mikhailov, G.A. and Marchenko, M.A., Parallel Realization of Statistical Simulation and Random Number Generators, Russ. J. Numer. Anal. Math. Modelling, 2002, vol. 17, no. 1, pp. 113–124.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Marchenko, M.A., Parallel 128-bit Congruent Pseudorandom Number Generator, manuscript is available at: http://osmf.sscc.ru/:_mam/generator_rus.htm.
  9. 9.
    Dyadkin, I.G. and Hamilton, K.G., A Study of 128-bit Multipliers for Congruential Pseudorandom Number Generators, Comput. Phys. Comm., 2000, vol. 125, pp. 239–258.zbMATHCrossRefGoogle Scholar
  10. 10.
    Kendall, M. and Stuart, A., Statistical Inference and Relationship, London: Griffin, 1961. Translated under the title Statisticheskie vyvody i svyazi, Moscow: Nauka, 1973.Google Scholar
  11. 11.
    Marchenko, M.A., MONC System of Distributed Computing, manuscript is available at: http://osmf.sscc.ru/:_mam/monc_rus.htm.
  12. 12.
    Marchenko, M.A. and Mikhailov, G.A., Weight Algorithms for Statistic Simulation of Difusion Processes, Zh. Vychisl. Mat. Mat. Fiz., 2003, vol. 43, no. 4, pp. 571–584.zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. A. Marchenko
    • 1
  • G. A. Mikhailov
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations