Advertisement

Automation and Remote Control

, Volume 68, Issue 5, pp 822–833 | Cite as

Direct and inverse problems of high-viscosity fluid dynamics

  • A. I. Korotkii
  • I. A. Tsepelev
Topical Issue

Abstract

Methods and algorithms of numerical simulation for three-dimensional thermal-convective motions of the inhomogeneous high-viscosity incompressible fluid in the direct and inverse time are described. In contrast to the direct-time problem, the inverse-time problem is ill-posed; to solve it, one of the variants of the quasi-reversibility method is used. The main attention is focused on the organization of effective computing processes on parallel-action computers. As an example, simulation results of the inverse problem of restoration of development history of thermal mantle plumes are given.

PACS numbers

47.55.pb 47.11.-j 47.63.mf 02.30.Zz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landau, L.D. and Lifshits, E.M., Gidrodinamika, Moscow: Nauka, 1986. Translated into English under the title Hydrodynamics, Oxford: Pergamon, 1990.Google Scholar
  2. 2.
    Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Fluids, New York: Gordon and Breach, 1963. Translated under the title Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Moscow: Nauka, 1970.Google Scholar
  3. 3.
    Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford: Clarendon, 1961.zbMATHGoogle Scholar
  4. 4.
    Tikhonov, A.N. and Arsenin, B.Ya., Solutin of Ill-Posed Problems, Winston, V.H., Ed., Washington: Harper and Brace, 1977. Translated under the title Metody resheniya nekorrektnykh zadach, Moscow: Nauka, 1979.Google Scholar
  5. 5.
    Ivanov, V.K., Vasin, V.V., and Tanana, V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Moscow: Nauka, 1978. Translated into English under the title Theory of Linear Ill-Posed Problems and Its Applications, Utrecht: VSP, 2002.Google Scholar
  6. 6.
    Lavrent’ev, M.M., Romanov, V.G., and Shishatskii, S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Moscow: Nauka, 1980. Translated into English under the title Ill-Posed Problems of Mathematical Physics and Analysis, Providence: AMS, 1986, vol. 64.Google Scholar
  7. 7.
    Lattes, R. and Lions, J.-L., M’ethode de quasi-r’eversibilit’e et applications, Dunod: Paris, 1967. Translated under the title Metod kvaziobrashcheniya i ego prilozheniya, Moscow: Mir, 1970.Google Scholar
  8. 8.
    Voevodin, V.V. and Voevodin, Vl.V., Parallel’nye vychisleniya (Parallel Computing), St. Petersburg: BKhV-Peterburg, 2002.Google Scholar
  9. 9.
    Ortega, J., Introduction to Parallel and Vector Solutions of Linear Systems, New York: Plenum, 1987. Translated under the title Vvedenie v parallel’nye i vektornye metody resheniya lineinykh sistem, Moscow: Mir, 1991.Google Scholar
  10. 10.
    Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., and Dongarra, J.J., MPI: The Complete Reference, Cambridge: MIT Press, 1996.Google Scholar
  11. 11.
    Wijngaart, R., The NAS Parallel Benchmarks 2.4. Technical Report NAS 02-007, Moffett Field: NASA Ames Research Center, 2002.Google Scholar
  12. 12.
    Mitchell, A.R. and Wait, R., The Finite Element Method in Partial Differential Equations, New York: Wiley, 1977. Translated under the title Metod konechnykh elementov dlya uravnenii s chastnymi proizvodnymi, Moscow: Mir, 1981.zbMATHGoogle Scholar
  13. 13.
    Marchuk, G.I., Methods of Numerical Mathematics, New York: Springer, 1982. Translated under the title Metody vychislitel’noi matematiki, Moscow: Nauka, 1989.zbMATHGoogle Scholar
  14. 14.
    Yanenko, N.N., Metod drobnykh shagov (The Subincremental Method), Novosibirsk: Nauka, 1967.Google Scholar
  15. 15.
    Samarskii, A.A. and Vabishchevich, P.N., Computational Heat Transfer; vol. 1: Mathematical Modeling; vol. 2: The Finite Difference Methodology, Chichester: Wiley, 1995. Translated under the title Vychislitel’naya teploperedacha, Moscow: URSS, 2002.Google Scholar
  16. 16.
    Samarskii, A.A. and Vabishchevich, P.N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (NumericalMethods for Solving Inverse Problems of Mathematical Physics), Moscow: URSS, 2004.Google Scholar
  17. 17.
    Naimark, B.M., Ismail-Zadeh, A.T., Korotkii, A.I., Suetov, A.P., and Tsepelev, I.A., Numerical Implementation of a Hydrodynamic Model of Evolution of Sedimentary Basins, Tr. Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk, 1998, vol. 5, pp. 143–173.zbMATHGoogle Scholar
  18. 18.
    Naimark, B.M., Ismail-Zadeh, A.T., Korotkii, A.I., et al., Simulation of Three-dimensional Viscous Flows in the Upper Mantle, Vychisl. Seism., Vol. 30: Vopr. Geod. Seism, 1998, pp. 3–15.Google Scholar
  19. 19.
    Tsepelev, I.A., Korotkii, A.I., Ismail-Zadeh, A.T., et al., Parallel Algorithms for Solving the Problem of Simulating High-Viscosity Flows in the Upper Mantle, Alg. Progr. Sredstva Paral. Vychisl., 1998, vol. 2, pp. 301–317.Google Scholar
  20. 20.
    Tsepelev, I.A., Korotkii, A.I., Ismail-Zadeh, A.T., et al., Parallel Algorithms for Simulating Thermal Convection in the Viscous Fluid, Alg. Progr. Sredstva Vychisl., 1999, vol. 3, pp. 252–279.Google Scholar
  21. 21.
    Ismail-Zadeh, A.T., Korotkii, A.I., Naimark, B.M., et al., Numerical Simulation of Three-dimensional Viscous Flows with Gravitation and Thermal Effects, Zh. Vychisl. Mat. Mat. Fiz., 2001, vol. 41, no. 9, pp. 1399–1415.MathSciNetGoogle Scholar
  22. 22.
    Korotkii, A.I., Tsepelev, I.A., Ismail-Zadeh, A.T., et al., Three-dimensional Simulation of the Inverse Problem of the Rayleigh-Taylor Instability, Izv. Ural. Gos. Univ., Vol. 4: Mat. Mekh., 2002, no. 22, pp. 94–102.Google Scholar
  23. 23.
    Korotkii, A.I. and Tsepelev, I.A., Three-dimensional Simulation of the Inverse Problem of the Rayleigh-Benard Instability, Izv. Ural. Gos. Univ., Vol. 5: Mat. Mekh., 2003, no. 26, pp. 87–96.Google Scholar
  24. 24.
    Ismail-Zadeh, A.T., Korotkii, A.I., Naimark, B.M., et al., Three-dimensional Simulation of the Retrospective Problem of Thermal Convection, Zh. Vychisl. Mat. Mat. Fiz., 2003, vol. 43, no. 4, pp. 614–626.MathSciNetGoogle Scholar
  25. 25.
    Ismail-Zadeh, A.T., Schubert, G., Tsepelev, I.A., and Korotkii, A.I., Inverse Problem of Thermal Convection: Numerical Approach and Application to Mantle Plume Restoration, Phys. Earth Planet. Interiors., 2004, vol. 145, pp. 99–114.CrossRefGoogle Scholar
  26. 26.
    Ismail-Zadeh, A., Tsepelev, I., Talbot, C., and Korotkii, A., Three-dimensional Forward and Backward Modelling of Diapirism: Numerical Approach and Its Applicability to the Evolution of Salt Structures in the Pricaspian Basin, Tectonophysics, 2004, vol. 387, no. 1–4, pp. 81–103.CrossRefGoogle Scholar
  27. 27.
    Ismail-Zadeh, A., Schubert, G., Tsepelev, I., and Korotkii, A., Three-dimensional Forward and Backward Numerical Modeling of Mantle Plume Evolution: Effects of Thermal Diffusion, Geophysic. Res., 2006, vol. 111, no. B6.Google Scholar
  28. 28.
    Ismail-Zadeh, A.T., Korotkii, A.I., Krupskii, D.P., et al., Evolution of Thermal Plumes in the Earth’s Mantle, Dokl. Ross. Akad. Nauk, 2006, vol. 411, no. 4, pp. 523–526.Google Scholar
  29. 29.
    Ismail-Zadeh, A.T., Korotkii, A.I., and Tsepelev, I.A., Three-dimensional Numerical Simulation of the Inverse Retrospective Problem of Thermal Convection Using the Quasi-Reversibility Method, Zh. Vychisl. Mat. Mat. Fiz., 2006, vol. 46, no. 12, pp. 2277–2288.Google Scholar
  30. 30.
    Wang, Y. and Hutter, K., Comparisons of Numerical Methods with Respect to Convectively Dominated Problem, J. Numer. Meth. Fluid, 2001, vol. 37, pp. 721–745.zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. I. Korotkii
    • 1
  • I. A. Tsepelev
    • 1
  1. 1.Institute of Mathematics and Mechanics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations