Advertisement

Automation and Remote Control

, Volume 68, Issue 5, pp 811–821 | Cite as

On evolutionary algorithms, neural-network computations, and genetic programming. Mathematical problems

  • L. N. Korolev
Topical Issue
  • 44 Downloads

Abstract

Some problems related to evolutionary and genetic algorithms, genetic programming, and neural-network computations on solving applied problems that are reduced to analysis of functions prescribed at permutations are roughly studied. Natural parallelism of these algorithms and possibility of their realization on modern computers are noted.

PACS number

02.60.Pn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samuel, K., Some Studies in Machine Learning Using the Game of Checkers, in Computers and Thought, New York: McCraw-Hill, 1963.Google Scholar
  2. 2.
    Osovskii, S., Neironnye seti dlya obrabotki informatsii (Neural Networks for Data Processing), Moscow: Finansy i Statistika, 2002.Google Scholar
  3. 3.
    McCulloch, V.S. and Pitts, W.H, Logical Calculus of Ideas Immanent in Nervous Activity, Bull. Math. Biophysics, 1943, vol. 2, pp. 548–558.Google Scholar
  4. 4.
    Rosenblatt, F., Principles of Neural Dynamics, New York: Spartan, 1962. Translated under the title Printsipy neirodinamiki, Moscow: Nauka, 1965.Google Scholar
  5. 5.
    Minsky, M. and Papert, S., Perceptrons, Cambridge: MIT Press, 1969. Translated under the title Perseptrony, Moscow: Nauka, 1971.zbMATHGoogle Scholar
  6. 6.
    Holland, J., Adaptation in Natural and Artificial Systems, Cambridge: MIT Press, 1992.Google Scholar
  7. 7.
    Koza, J., Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge: MIT Press, 1992.zbMATHGoogle Scholar
  8. 8.
    Koza, J., Genetic Programming II: Automatic Discovery of Reusable Programs, Cambridge: MIT Press, 1994.zbMATHGoogle Scholar
  9. 9.
    Chekhovich, Yu.V., Application of the Algebraic Approach to Problems of Trends Separation, in Matematicheskie metody raspoznavaniya obrazov (MMRO-10). Trudy 10 Vserossiiskoi konferentsii Vychislitel’nogo tsentra Rossiiskoi akademii nauk (Mathematical Methods of Pattern Recognition. Proc. 10th all-Russian Conference of the Computing Centre of the Russian Academy of Sciences), Moscow: ALEVV, 2001, pp. 315–316.Google Scholar
  10. 10.
    Rudakov, K.V. and Chekhovich, Yu.V., On Synthesis of Learning Algorithms of Thrends Separation (the Algebraic Approach), Prikl. Mat. Inform., 2001, no. 8, pp. 97–113.Google Scholar
  11. 11.
    Srinivas, M. and Patnaik, L., Genetic Algorithms. A Survey, J. Comput., 1994, vol. 27, no. 6, pp. 28–43.CrossRefGoogle Scholar
  12. 12.
    Ribeiro, J. et al., Genetic Algorithms. Programming Environments, J. Comput., 1994, vol. 27, no. 6, pp. 17–26.CrossRefGoogle Scholar
  13. 13.
    Forrest, S., Genetic Algorithm: Principles of Natural Selection Applied to Computation, J. Sci., 1993, vol. 261, pp. 872–878.CrossRefGoogle Scholar
  14. 14.
    Bonzhaf, W., Nordin, P., Keller, R.E., et al., Genetic Programming—An Introduction, Heidelberg: Springer, 1998.Google Scholar
  15. 15.
    Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles, Reading: Addison-Wesley, 1974. Translated under the title Printsipy raspoznavaniya obrazov, Moscow: Mir, 1978.zbMATHGoogle Scholar
  16. 16.
    Zhuravlev, Yu.I., On Recognition Algorithms with Representative Sets (on Logical Algorithms), Zh. Vychisl. Mat. Mat. Fiz., 2002, vol. 42, pp. 1425–1435.zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • L. N. Korolev
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations