Advertisement

Automation and Remote Control

, Volume 68, Issue 5, pp 787–798 | Cite as

Parallelization of the global extremum searching process

  • Yu. G. Evtushenko
  • V. U. Malkova
  • A. A. Stanevichyus
Topical Issue

Abstract

The parallel algorithm for searching the global extremum of the function of several variables is designed. The algorithm is based on the method of nonuniform coverings proposed by Yu.G. Evtushenko for functions that comply with the Lipschitz condition. The algorithm is realized in the language C and message passing interface (MPI) system. To speed up computations, auxiliary procedures for founding the local extremum are used. The operation of the algorithm is illustrated by the example of atomic cluster structure calculations.

PACS number

89.20.Ff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strongin, R.G. and Sergeyev, Ya.D, Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms, Dordrecht: Academic, 2000.zbMATHGoogle Scholar
  2. 2.
    Voevodin, V.V. and Voevodin, Vl.V., Parallel’nye vychisleniya (Parallel Computing), St. Petersburg: BKhV-Peterburg, 2002.Google Scholar
  3. 3.
    Evtushenko, Yu.G., Numerical Method for Finding the Global Extremum of a Function (Enumeration of a Nonuniform Grid), Zh. Vychisl. Mat. Mat. Fiz., 1971, vol. 11, no. 6, pp. 1390–1403.zbMATHGoogle Scholar
  4. 4.
    Evtushenko, Yu.G. and Rat’kin, V.A., The Half-Division Method for the Global Function of Several Variables, Tekh. Kibern., 1987, no. 1, pp. 119–127.Google Scholar
  5. 5.
    Belyankov, A.Ya., Numerical Efficiency Increase for Methods of Nonuniform Covering in Global Optimization, in Metody matematicheskogo programmirovaniya i programmnoe obespechenie. Tezisy dokl. (Mathematical Programming Methods and Software. Theses Rep.), Sverdlovsk: Akad. Nauk SSSR, 1989, pp. 21–22.Google Scholar
  6. 6.
    Interdepartmental Supercomputer Center of the Russian Academy of Sciences, website: http://www.jscc.ru.
  7. 7.
    Posypkin, M.A. and Sigal, I.Kh., Investigation of Algorithms for Parallel Computations in Knapsack-Type Discrete Optimization Problems, Zh. Vychisl. Mat. Mat. Fiz., 2005, vol. 45, no. 10, pp. 1801–1809.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Evtushenko, Yu.G. and Potapov, M.A., Solution Methods for Multicreiterion Problems, Dokl. Akad. Nauk SSSR, 1986, vol. 291, no. 1, pp. 25–29.MathSciNetGoogle Scholar
  9. 9.
    Evtushenko, Yu.G., Numerical Method for Finding the Best Guaranteed Estimates, Zh. Vychisl. Mat. Mat. Fiz., 1972, vol. 12, no. 1, pp. 89–104.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Yu. G. Evtushenko
    • 1
  • V. U. Malkova
    • 1
  • A. A. Stanevichyus
    • 1
  1. 1.Dorodnitsyn Computer CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations