Skip to main content
Log in

Frequency methods in the theory of pulse-modulated control systems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The frequency methods of studying stability of the nonlinear control systems with various kinds of pulse modulation were reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gouy, M., Sur une étuve a température constante, J. Physique, Sér. 3, 1897, vol. 6, pp. 479–483.

    Google Scholar 

  2. Zhukovskii, N.E., Theory of Controlling Running Machines, in Collected Papers. Hydraulics. Applied Mechanics, Moscow: GITTL, vol. III, 1949.

    Google Scholar 

  3. Jones, R.W., Li, C.C., Meyer, A.U., and Pinter, B.B., Pulse Modulation in Physiological Systems: Phenomenological Aspects, IRE Trans., 1961, vol. BME-8, no. 1, pp. 59–63.

    Google Scholar 

  4. Pavlidis, T., A New Model for Simple Neuronal Nets and Its Application in the Design of a Neuronal Oscillation, Bull. Math. Biophys., 1965, vol. 27, no. 2, pp. 215–229.

    Article  MATH  MathSciNet  Google Scholar 

  5. Gelig, A.Kh., On Stability of the Mathematical Model of Neural Network, Biofizika, 1968, no. 2, pp. 290–296.

  6. Gelig, A.Kh., Dinamika impul’snykh sistem i neironnykh setei (Dynamics of Pulse Systems and Neural Networks), Leningrad: Leningr. Gos. Univ., 1982.

    Google Scholar 

  7. Pulsed Neural Networks, Maass, W. and Bishop, C.M., Eds., London: MIT Press, 1998.

    MATH  Google Scholar 

  8. Bromberg, P.V., Ustoichivost’ i avtokolebaniya impul’snykh sistem regulirovaniya (Stability and Autooscillations of the Pulse Control Systems), Moscow: Oborongiz, 1953.

    Google Scholar 

  9. Bromberg, P.V., Matrichnye metody v teorii releinogo i impul’snogo regulirovaniya (Matrix Methods in the Theory of Relay and Pulse Control), Moscow: Nauka, 1967.

    Google Scholar 

  10. Tsypkin, Ya.Z., Teoriya lineinykh impul’snykh sistem (Theory of Linear Pulse Systems), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  11. Jury, E.I., Sampled-data Control Systems, New York: Wiley, 1958. Translated under the title Impul’snye sistemy avtomaticheskogo regulirovaniya, Moscow: GIFML, 1963.

    MATH  Google Scholar 

  12. Tsypkin, Ya.Z., Absolute Stability of the Equilibrium Position and Processes in the Nonlinear Pulse Automatic Systems, Avtom. Telemekh., 1963, no. 12, pp. 4–12.

  13. Tsypkin, Ya.Z., Frequency Criteria for Absolute Stability of the Nonlinear Pulse Systems, Avtom. Telemekh., 1964, no. 3, pp. 281–289.

  14. Tsypkin, Ya.Z., Criterion of Absolute Stability of the Pulse Automatic Systems with Monotonic Characteristics of the Nonlinear Element, Dokl. Akad. Nauk SSSR, 1964, vol. 155, no. 5, pp. 1029–1032.

    MATH  MathSciNet  Google Scholar 

  15. Tsypkin, Ya.Z. and Popkov, Yu.S., Teoriya nelineinykh impul’snykh sistem (Theory of Nonlinear Pulse Systems), Moscow: Nauka, 1973.

    Google Scholar 

  16. Szegö, G. and Kalman, R., Sur la stabilité absolute d’un sistéme d’équations aux differences finies, C.R. Acad. Sci., 1963, vol. 257, pp. 388–390.

    MATH  Google Scholar 

  17. Szegö, G., On the Absolute Stability of Sampled Data Control Systems, Proc. Nat. Acad. Sci. USA, 1963, vol. 50, no. 3, pp. 558–560.

    Article  MATH  Google Scholar 

  18. Dmitriev, Yu.A., Absolute Stability of the Automatic Systems with One Pulse Controller, Dokl. Akad. Nauk SSSR, 1965, vol. 160, no. 3, pp. 511–514.

    MATH  MathSciNet  Google Scholar 

  19. Dmitriev, Yu.A., Frequency Conditions for Absolute Stability of the Pulse Automatic Systems with Single Nonlinear Unit, Dokl. Akad. Nauk SSSR, 1965, vol. 164, no. 2, pp. 263–266.

    MATH  MathSciNet  Google Scholar 

  20. Jury, E.I. and Lee, B.W., On the Stability of a Certain Class of Nonlinear Sampled-data Systems, IEEE Trans. Automat. Control, 1964, vol. 9, no. 1, pp. 51–61.

    Article  MathSciNet  Google Scholar 

  21. Shepelyavyi, A.I., Frequency Criteria for Stability in Large and Instability of the Pulse-width Control Systems, Vestn. Leningr. Univ., Ser. Mat. Mekh. Astron., 1972, vol. 3, pp. 77–85.

    Google Scholar 

  22. Pavlidis, T. and Jury, E.I., Analysis of a New Class of Pulse-frequency Modulated Feedback Systems, IEEE Trans. Automat. Control, 1965, vol. 10, no. 1, pp. 35–43.

    Article  Google Scholar 

  23. Kuntsevich, V.M. and Chekhovoi, Yu.N., Nelineinye sistemy upravleniya s chastotno-i shirotnoimpul’snoi modulyatsiei (Nonlinear Control Systems with Pulse-frequency and Pulse-width Modulation), Kiev: Tekhnika, 1970.

    Google Scholar 

  24. Morgovskii, Yu.Ya., Impul’snye sistemy upravlyaemoi struktury s tiristornymi preobrazovaniyami (Controlled-Structure Pulse Systems with Thyristor Conversions), Moscow: Energiya, 1976.

    Google Scholar 

  25. Erikhov, M.M. and Ostrovskii, M.Ya., Sufficient Conditions for Existence of the T-periodic Modes in Systems of “Linear” Integral Pulse-width Modulation, Avtom. Telemekh., 1987, no. 9, pp. 26–30.

  26. Vremya-impul’snye sistemy avtomaticheskogo upravleniya (Time-pulse Control Systems), Makarov, I.M., Ed., Moscow: Nauka, 1997.

    Google Scholar 

  27. Yakubovich, V.A., Frequency Conditions for Absolute Stability of the Control Systems with More Than One Nonlinear or Linear Nonstationary Unit, Avtom. Telemekh., 1967, vol. 28, no. 6, pp. 5–30.

    Google Scholar 

  28. Yakubovich, V.A., On Pulse Control Systems with Width Modulation, Dokl. Akad. Nauk SSSR, 1968, vol. 180, pp. 283–285.

    Google Scholar 

  29. Yakubovich, V.A., Methods of the Theory of Absolute Stability, in Metody issledovaniya nelineinykh sistem avtomaticheskogo upravleniya (Methods of Study of the Nonlinear Control Systems), Nelepina, R.A., Ed., Moscow: Nauka, 1975, pp. 74–180.

    Google Scholar 

  30. Rantzer, A. and Megretski, A., System Analysis via Integral Quadratic Constraints, IEEE Trans. Automat. Control, 1997, vol. 42, no. 6, pp. 812–830.

    MathSciNet  Google Scholar 

  31. Gelig, A.Kh., Absolute Stability of the Nonlinear Pulse Systems with Width and Time Modulation, Avtom. Telemekh., 1968, no. 7, pp. 33–43.

  32. Gelig, A.Kh. and Churilov, A.N., Kolebaniya i ustoichivost’ nelineinykh impul’snykh sistem (Oscillations and Stability of the Nonlinear Pulse Systems), St. Petersburg: S.-Peterburg. Gos. Univ., 1993.

    Google Scholar 

  33. Gelig, A.Kh. and Churilov, A.N., Stability and Oscillations of Nonlinear Pulse-Modulated Systems, Boston: Birkhäuser, 1998.

    MATH  Google Scholar 

  34. Gelig, A.Kh. and Churilov, A.N., Stability and Oscillations in Pulse-modulated Systems: A Review of Mathematical Approaches, Functional Differential Equations, 1996, vol. 3, no. 3–4, pp. 287–420.

    MATH  MathSciNet  Google Scholar 

  35. Gelig, A.Kh. and Churilov, A.N., Dynamics of Systems with Pulse Modulation, in Nelineinaya teoriya upravleniya i ee prilozheniya. Dinamika, upravlenie, stabilizatsiya (Nonlinear Control Theory and Its Applications. Dynamics, Control, Stabilization), Matrosov, V.M., Vasil’ev, S.N., and Moskalenko, A.I., Eds., Moscow: FIZMATLIT, 2003, pp. 313–339.

    Google Scholar 

  36. Krasnosel’skii, M.A. and Pokrovskii, A.V., Sistemy s gisterezisom, Moscow: Nauka, 1983. Translated into English under the title Systems with Hysteresis, Berlin: Springer, 1989.

    Google Scholar 

  37. Andeen, R.E., Analysis of Pulse Duration Sampled-data Systems with Linear Elements, IRE Trans. Automat. Control, 1960, vol. 5, no. 4, pp. 306–313.

    Article  Google Scholar 

  38. Andeen, R.E., The Principle of Equivalent Areas, Trans. AIEE (Applications and Industry), 1960, no. 79, pp. 332–336.

  39. Mikusinski, Ya. and Sikorski, R., Elementarnaya teoriya obobshchennykh funktsii (Elementary Theory of Generalized Functions), Moscow: Inostrannaya Literatura, 1959.

    Google Scholar 

  40. Gülcür, H.O. and Meyer, A.U., Finite-pulse Stability of Interconnected Systems with Complete-reset Pulse Frequency Modulators, IEEE Trans. Automat. Control, 1973, vol. 18, no. 4, pp. 387–392.

    Article  Google Scholar 

  41. Shepelyavyi, A.I., On Qualitative Study of Stability in Large and Instability of the Pulse-amplitude Systems, Dokl. Akad. Nauk SSSR, 1970, vol. 190, no. 5, pp. 1044–1047.

    MathSciNet  Google Scholar 

  42. Shepelyavyi, A.I., Absolute Instability of the Nonlinear Amplitude-pulse Control Systems, Frequency Criteria, Avtom. Telemekh., 1972, no. 6, pp. 49–56.

  43. Tsypkin, Ya.Z., On Stability in Large of the Nonlinear Pulse Automatic Systems, Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 1, pp. 52–55.

    MATH  Google Scholar 

  44. Yakubovich, V.A., Absolyutnaya Stability of the Pulse Systems with More Than One Nonlinear or Linear Nonstationary Units. I, Avtom. Telemekh., 1967, no. 9, pp. 59–72.

  45. Yakubovich, V.A., Absolyutnaya Stability of the Pulse Systems with More Than One Nonlinear or Linear Nonstationary Units. II, Avtom. Telemekh., 1968, no. 2, pp. 81–101.

  46. Yakubovich, V.A., Absolute Stability of Nonlinear Discrete Systems, Revue Roumaine Math. Pures Appl., 1994, vol. 39, no. 4, pp. 385–389.

    MATH  MathSciNet  Google Scholar 

  47. Delfeld, F.R. and Murphy, G.J., Analysis of Pulse-width-modulated Control Systems, IRE Trans. Automat. Control, 1961, vol. 6, no. 3, pp. 35–44.

    Google Scholar 

  48. Jury, E.I. and Lee, B.W., Absolute Stability of Systems with Multiple Nonlinearities, Avtom. Telemekh., 1965, vol. 26, no. 6, pp. 945–965.

    MATH  Google Scholar 

  49. Min, B.I., Slivinsky, Ch., and Hoft, R.G., Absolute Stability Analysis of PWM Systems, IEEE Trans. Automat. Control, 1977, vol. 22, no. 3, pp. 447–451.

    Article  MATH  MathSciNet  Google Scholar 

  50. Kadota, T.T. and Bourne, H.C., Stability Conditions of Pulse-width-modulated Systems Through the Second Method of Lyapunov, IRE Trans. Automat. Control, 1961, vol. 6, no. 3, pp. 266–275.

    Article  Google Scholar 

  51. Murphy, G.J. and Wu, S.H., A Stability Criterion for Pulse-width-modulated Feedback Control Systems, IEEE Trans. Automat. Control, 1964, vol. 9, no. 4, pp. 434–441.

    Article  MathSciNet  Google Scholar 

  52. Schulz, H.J., Regelungssysteme mit Impulsbreitenmodulation, Z. Messen, Steuern, Regeln, 1964, vol. 7, no. 3, pp. 129–133.

    MathSciNet  Google Scholar 

  53. Schulz, H.J., Untersuchung von Impulssystemen mit Impulsbreitenmodulator als Regeln, Z. Messen, Steuern, Regeln, 1966, vol. 9, no. 5, pp. 174–178.

    Google Scholar 

  54. Ziedan, I.E., Conditions for Ensuring a Satisfactory Stability Range in a PWM System Using the Method of Murphy and Wu, Electron. Lett., 1966, vol. 2, pp. 400, 401.

    Article  Google Scholar 

  55. Ziedan, I.E., Stability Criterion for PWM Feedback Systems Containing One Integrating Element, Electron. Lett., 1966, vol. 2, pp. 402, 403.

    Article  Google Scholar 

  56. Datta, K.B., Stability of Pulse-width Modulated Feedback Systems, Int. J. Control, 1972, vol. 16, no. 5, pp. 977–983.

    MATH  Google Scholar 

  57. Leonov, G.A., Estimation of the Periodic Oscllations of the Nonlinear Dynamic Systems, Avtom. Telemekh., 2005, no. 6, pp. 147–152.

  58. Halanay, A., Positive Definote Kernels and Stability of the Automatic Systems, Revue Roumaine Math. Pures Appl., 1964, vol. 9, no. 8, pp. 751–765.

    MATH  MathSciNet  Google Scholar 

  59. Pavlidis, T. and Jury, E.I., Comments to Discussion of “Analysis of a New Class of Pulse-frequency Modulated Feedback Systems,” IEEE Trans. Automat. Control, 1965, vol. 10, no. 4, pp. 213, 214.

    Google Scholar 

  60. Dymkov, V.I., On Absolute Stability of the Pulse-frequency Systems, Avtom. Telemekh., 1967, no. 10, pp. 109–114.

  61. Lychak, M.M. and Chekhovoi, Yu.N., On Some Geberalization of the Paper of obobshchenii A.Kh. Gelig “Stability of Pulse Systems with Frequency Modulation of the Second Kind,” Avtom. Telemekh., 1973, no. 5, pp. 177–179.

  62. Kan, E.P.F. and Jury, E.I., On Popov Criteria for ΣPFM Systems, Int. J. Control, Ser. I, 1971, vol. 13, pp. 1121–1129.

    MATH  MathSciNet  Google Scholar 

  63. Chekhovoi, Yu.N., Relay-hysteresis Model of Pulse-frequency Second-kind Modulator, Avtomatika, 1973, no. 4, pp. 35–38.

  64. Todo, T., Selvaratnam, K., Mori, T., and Kuroe, Y., Analysis of Hybrid Feedback Systems with PFM Mechanisms, IEE Proc. Control Theory Appl., 1999, vol. 146, no. 3, pp. 259–264.

    Article  Google Scholar 

  65. Todo, T., Mori, T., and Kuroe, Y., Modified Nyquist Analysis for PFM-continuous-time Hybrid Systems, Int. J. Syst. Sci., 2001, vol. 32, no. 12, pp. 1143–1147.

    Article  MathSciNet  Google Scholar 

  66. Leonov, G.A., Reitmann, V., and Smirnova, V.B., Non-Local Methods for Pendulum-like Feedback Systems, Stuttgart: Teubner, 1992.

    MATH  Google Scholar 

  67. Leonov, G.A. and Smirnova, V.B., Matematicheskie problemy teorii fazovoi sinkhronizatsii (Mathematical Problems of the Theory of Phase Synchronization), St. Petersburg: Nauka, 2000.

    Google Scholar 

  68. Leonov, G.A. and Seledzhi, S.M., Sistemy fazovoi sinkhronizatsii v analogovoi i tsifrovoi skhemotekhnike (Systems of Phase Synchronization in the Analog and Digital Circuit Technology), St. Petersburg: Nevskii Dialekt, 2002.

    Google Scholar 

  69. Gelig, A.Kh., Stability of Nonlinear Pulse Systems, Dokl. Akad. Nauk SSSR, 1968, vol. 178, no. 4, pp. 793–796.

    MATH  MathSciNet  Google Scholar 

  70. Gelig, A.Kh., Frequency Criterion for Nonlinear Pulse Systems Stability, Syst. Control Lett., 1982, vol. 1, no. 6, pp. 409–412.

    Article  MATH  MathSciNet  Google Scholar 

  71. Churilov, A.N., A Frequency Criterion for Stability of the Nonlinear Pulse Systems, Avtom. Telemekh., 1991, no. 6, pp. 95–104.

  72. Churilov, A.N., Frequency Criterion for Stability of the Nonlinear Pulse Systems with Even Law of Pulsation, Avtom. Telemekh., 1992, no. 4, pp. 93–101.

  73. Churilov, A.N., Stability of Systems with Integral Pulse-width Modulation, Avtom. Telemekh., 1993, no. 6, pp. 142–150.

  74. Yakubovich, V.A., S-procedure in the Nonlinear Control Theory, Vestn. Leningr. Univ., Ser. Mat. Mekh. Astron., 1977, vol. 4, pp. 73–93.

    Google Scholar 

  75. Yakubovich, V.A., Frequency Theorem in the Control Theory, Sib. Mat. Zh., 1973, vol. 14, no. 2, pp. 384–420.

    MATH  Google Scholar 

  76. Gelig, A.Kh. and Churilov, A.N., Popov-type Stability Criterion for the Functional-differential Equations Describing Pulse-modulated Control Systems, Functional Diff. Equations, 1993, vol. 1, pp. 95–107.

    MATH  MathSciNet  Google Scholar 

  77. Kuznetsov, N.V., On the Stability of Nonlinear Systems with the Monotonic Differentiable Characteristics, Differents. uravneniya i protsessy upravleniya (electronic journal), 2001, no. 1, http://www.neva.ru/journal.

  78. Kuznetsov, N.V., Stability of One Class of the Functionally-differential Equations in the Simplest Critical Case with Monotonically Differentiable nonlinear Characteristic, Differents. uravneniya i protsessy upravleniya (electronic journal), 2003, no. 3, http://www.neva.ru/journal.

  79. Barkin, A.I., Zelentsovskii, A.L., and Pakshin, P.V., Absolyutnaya ustoichivost’ determinirovannykh i stokhasticheskikh sistem upravleniya (Absolute Stability of the Deterministic and Stochastic Control Systems), Moscow: Mosk. Aviats. Inst., 1992.

    Google Scholar 

  80. Gelig, A.Kh., Kuznetsov, N.V., and Mikheeva, N.N., Stability of the Pulse Control Systems, in Proc. 6th CPb. Symp. Theory of Adaptive Systems, St. Petersburg, 1999, vol. 2, pp. 50–53.

    Google Scholar 

  81. Leonov, G.A., Frequency Criterion for Stabilization of the Nonlinear Systems by harmonic External Action, Avtom. Telemekh., 1986, no. 1, pp. 169–184.

  82. Gelig, A.Kh. and Churilova, M.Yu., Stabilization of the Pulse System by a Periodic External Action, in Analiz i upravlenie nelineinymi kolebatel’nymi sistemami (Analysis and System of the Nonlinear Oscillatory Systems), Leonov, G.A. and Fradkov, A.L., Eds., St. Petersburg: Nauka, 1998, pp. 5–21.

    Google Scholar 

  83. Gelig, A.Kh. and Churilov, A.N., Autooscillations in the Pulse System with Multiple Modulators, Vestn. S.-Peterburg. Gos. Univ., Ser. 1, 1999, vol. 2, no. 8, pp. 3–8.

    MATH  Google Scholar 

  84. Gelig, A.Kh., Elkhimova, Yu.V., and Churilov, A.N., Stability of a Class of the Functionally-differential Ito Equations, Vestn. S.-Peterburg. Gos. Univ., Ser. 1, 1994, vol. 2, no. 8, pp. 3–9.

    MATH  Google Scholar 

  85. Gelig, A.Kh. and Elkhimova, Yu.V., Stability of the Functionally-differential Ito Equations with a Monotonic Nonlinear Characteristic, Vestn. S.-Peterburg. Gos. Univ., Ser. 1, 1995, vol. 28, no. 4, pp. 3–7.

    MATH  MathSciNet  Google Scholar 

  86. Gelig, A.Kh. and Elkhimova, Yu.V., Stability of the Nonlinear Pulse Systems under Random Perturbations of Parameters, Avtom. Telemekh., 1995, no. 11, pp. 140–147.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Kh. Gelig, A.N. Churilov, 2006, published in Avtomatika i Telemekhanika, 2006, No. 11, pp. 60–76.

This work was supported by the Russian Foundation for Basic Research, project no. 05-01-00290-a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelig, A.K., Churilov, A.N. Frequency methods in the theory of pulse-modulated control systems. Autom Remote Control 67, 1752–1767 (2006). https://doi.org/10.1134/S0005117906110038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117906110038

PACS numbers

Navigation