Advertisement

Automation and Remote Control

, Volume 67, Issue 4, pp 606–614 | Cite as

An adaptation algorithm for stabilization of nonlinear system in the absence of sector constraints

  • I. V. Amoskin
  • A. A. Botsov
  • N. A. Nikolaev
  • K. A. Sergeev
Adaptive and Robust Systems
  • 21 Downloads

Abstract

The possibility for applying the control method designed in [1] for stabilization of nonlinear systems consisting of a linear minimal phase block and a nonlinear static feedback block is examined. Unlike in [1], the nonlinear characteristic of the static nonlinearity is not assumed to belong to a sector, but is the output function raised to some power.

PACS number

02.30.Yy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bobtsov, A.A. and Nikolaev, N.A., Control Design via the Fradkov Theorem for Nonlinear Systems with Functional and Parametric Uncertainties, Avtom. Telemekh., 2005, no. 1, pp. 118–129.Google Scholar
  2. 2.
    Bobtsov, A.A., A Robust Control Algorithm for an Uncertain System without Measurement of the Derivatives of the Adjusted Variable, Avtom. Telemekh., 2003, no. 8, pp. 82–95.Google Scholar
  3. 3.
    Druzhinina, M.V., Nikiforov, V.O., and Fradkov, A.L., Output Adaptive Control Methods for Nonlinear Systems, Avtom. Telemekh., 1996, no. 2, pp. 3–33.Google Scholar
  4. 4.
    Nikiforov, V.O., Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive Robust Control with Perturbation Compensation), St. Petersburg: Nauka, 2003.Google Scholar
  5. 5.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.V., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemani (Nonlinear Adaptive Control for Complex Dynamic Systems), St. Petersburg: Nauka, 2000.Google Scholar
  6. 6.
    Byrnes, C.I. and Isidori, A., Asymptotic Stabilization of Minimum Phase Nonlinear Systems, IEEE Trans. Automat. Control, 1991, vol. 36, no. 10, pp. 1122–1137.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Isidori, A. and Byrnes, C.I., Output Regulation of Nonlinear Systems, IEEE Trans. Automat. Control, 1990, vol. 35, no. 2, pp. 131–140.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Isidori, A., A Remark on the Problem of Semiglobal Nonlinear Output Regulation, IEEE Trans. Automat. Control, 1997, vol. 42, no. 12, pp. 1734–1738.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Isidori, A., A Tool for Semiglobal Stabilization of Uncertain Non-Minimum-Phase Nonlinear Systems via Output Feedback, IEEE Trans. Automat. Control, 2000, vol. 45, no. 10, pp. 1817–1827.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jiang Zhong-Ping, Mareels, I., Hill, D., and Jie Huang, Universal Output Feedback Controllers for Nonlinear Systems with Unknown Control Direction, Proc. Am. Control Conf., Denver, 2003.Google Scholar
  11. 11.
    Khalil, H.K. and Esfandiari, F., Semiglobal Stabilization of a Class of Nonlinear Systems using Output Feedback, IEEE Trans. Automat. Control, 1993, vol. 38, no. 9, pp. 1412–1415.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kristic, M., Kanellakopoulos, I., and Kokotovic, P.V., Nonlinear and Adaptive Control Design, New York: Wiley, 1995.Google Scholar
  13. 13.
    Kristic, M. and Kokotovic, P.V., Adaptive Nonlinear Output-Feedback Schemes with Marino-Tomei Controller, IEEE Trans. Automat. Control, 1995, vol. 40, no. 6, pp. 1029–1041.MathSciNetGoogle Scholar
  14. 14.
    Lin, Z. and Saberi, A., Robust Semiglobal Stabilization of Minimum-Phase Input-Output Linearizable Systems via Partial State and Output Feedback, IEEE Trans. Automat. Control, 1995, vol. 40, no. 6, pp. 1029–1041.MathSciNetGoogle Scholar
  15. 15.
    Praly, L., Asymptotic Stabilization via Output Feedback for Lower Triangular Systems with Output-Dependent Incremental Rate, IEEE Trans. Automat. Control, 2003, vol. 48, no. 6, pp. 1103–1108.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Qian, C. and Lin, W., Output Feedback Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm, IEEE Trans. Automat. Control, 2002, vol. 47, no. 10, pp. 1710–1715.MathSciNetGoogle Scholar
  17. 17.
    Qian, C., Schrader, C.B., and Lin, W., Global Regulation of a Class of Uncertain Nonlinear Systems using Output Feedback, Proc. Am. Control Conf., Denver, 2003.Google Scholar
  18. 18.
    Fradkov, A.L., An Adaptive Stabilization System for a Linear Dynamic System, Avtom. Telemekh., 1974, no. 12, pp. 96–103.Google Scholar
  19. 19.
    Polyshin, I.G., Fradkov, A.L., and Khill, D.D., Passivity and Passification of Nonlinear Systems: A Review, Avtom. Telemekh., 2000, no. 3, pp. 3–37.Google Scholar
  20. 20.
    Barabanov, N.E., Gelig, A.Kh., Leonov, G.A., et. al., A Frequency Theorem (The Yakubovich-Kalman Lemma) in Control Theory, Avtom. Telemekh., 1996, no. 10, pp. 3–40.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. V. Amoskin
    • 1
  • A. A. Botsov
    • 1
  • N. A. Nikolaev
    • 1
  • K. A. Sergeev
    • 1
  1. 1.State Institute of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations