Advertisement

Automation and Remote Control

, Volume 67, Issue 4, pp 589–597 | Cite as

A randomized stochastic optimization algorithm: Its estimation accuracy

  • A. T. Vakhitov
  • O. N. Granichin
  • S. S. Sysoev
Stochastic Systems

Abstract

For a randomized stochastic optimization algorithm, consistency conditions of estimates are slackened and the order of accuracy for a finite number of observations is studied. A new method of realization of this algorithm on quantum computers is developed.

PACS number

02.50.Fz 02.60.Pn 03.67.Lx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiefer, J. and Wolfowitz, J., Statistical Estimation on the Maximum of a Regression Function, Ann. Math. Stat., 1952, vol. 23, pp. 462–466.MathSciNetGoogle Scholar
  2. 2.
    Granichin, O.N., Stochastic Approximation with Input Perturbation under Dependent Observation Noises, Vestn. Leningr. Gos. Univ., 1989, Ser. 1, no. 4, pp. 27–31.Google Scholar
  3. 3.
    Polyak, B.T. and Tsybakov, A.B., Optimal Accuracy Orders of Stochastic Approximation Algorithms, Probl. Peredachi Inform., 1990, no. 2, pp. 45–53.Google Scholar
  4. 4.
    Polyak, B.T. and Tsybakov, A.V., On Stochastic Approximation with Arbitrary Noise (the KW Case), in Topics in Nonparametric Estimation, Khasminskii, R.Z., Ed., Providence: Am. Math. Soc., 1992, no. 12, pp. 107–113.Google Scholar
  5. 5.
    Spall, J.C., A One-Measurement Form of Simultaneous Perturbation Stochastic Approximation, Automatica, 1997, vol. 33, pp. 109–112.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Granichin, O.N., A Stochastic Approximation Procedure with Input Perturbation, Avtom. Telemekh., 1992, no. 2, pp. 97–104.Google Scholar
  7. 7.
    Granichin, O.N., Estimation of the Maximum Point of an Unknown Function Observable on a Background of Dependent Noises, Probl. Peredachi Inform., 1992, no. 2, pp. 16–20.Google Scholar
  8. 8.
    Chen, H.F., Duncan T.E., and Pasik-Duncan, B., A Kiefer-Wolfowitz Algorithm with Randomized Differences, IEEE Trans. Automat. Control, 1999, vol. 44, no. 3, pp. 442–453.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Granichin, O.N., Estimation of Linear Regression Parameters under Arbitrary Noises, Avtom. Telemekh., 2002, no. 1, pp. 30–41.Google Scholar
  10. 10.
    Granichin, O.N., Randomized Stochastic Approximation Algorithms under Arbitrary Noises, Avtom. Telemekh., 2002, no. 2, pp. 44–55.Google Scholar
  11. 11.
    Granichin, O.N., Optimal Convergence Rate of Randomized Stochastic Approximation Algorithms under Arbitrary Noises, Avtom. Telemekh., 2003, no. 2, pp. 88–99.Google Scholar
  12. 12.
    Granichin, O.N. and Polyak, B.T., Randomizirovannye algoritmy otsenivaniya i optimizatsii pri pochti proizvol’nykh pomekhakh (Randomized Algorithms for Estimation and Optimization under Almost Arbitrary Noises), Moscow: Nauka, 2003.Google Scholar
  13. 13.
    Ljung, L. and Guo, L., The Role of Model Validation for Assessing the Size of the Unmodeled Dynamics, IEEE Trans. Automat. Control, 1997, vol. 42, no. 9, pp. 1230–1239.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Granichin, O.N., Nonminimax Filtration under Unknown Observation Noises, Avtom. Telemekh., 2002, no. 9, pp. 125–133.Google Scholar
  15. 15.
    Granichin, O.N., Linear Regression and Filtering under Nonstandard Assumptions (Arbitrary noise), IEEE Trans. Automat. Control, 2004, vol. 49, no. 10, pp. 1830–1835.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Vandersypen, L., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., and Chuang, I.L., Experimental Realization of Shor’s Quantum Factoring Algorithm using Nuclear Magnetic Resonance, Nature, 2001, vol. 414, pp. 883–887.CrossRefGoogle Scholar
  17. 17.
    Faddeev, L.D. and Yakubovskii, O.A., Lektsii po kvantovoi mekhanike dlya studentov matematikov (Lectures on Quantum Mechanics for Students of Mathematics), Izhevsk: RKhD, 2001.Google Scholar
  18. 18.
    Shor, P.W., Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM J. Comput., 1997, vol. 26, pp. 1484–1509.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kitaev, A., Shen’, A., and Vyalyi, M., Klassicheskie i kvantovye vychisleniya (Classical and Quantum Calculus), Izhevsk: RKhD, 2004.Google Scholar
  20. 20.
    Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968. Translated under the title Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Moscow: Nauka, 1984.Google Scholar
  21. 21.
    Zorich, V.A., Matematicheskii analiz (Matematical Analysis), Moscow: MTsNMO, 2001.Google Scholar
  22. 22.
    Polyak, B.T., Convergence and Convergence Rates of Iterative Stochastic Algorithms. I, Avtom. Telemekh., 1976, no. 12, pp. 83–94.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. T. Vakhitov
    • 1
  • O. N. Granichin
    • 1
  • S. S. Sysoev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations