Advertisement

Automation and Remote Control

, Volume 67, Issue 4, pp 538–551 | Cite as

Practical control optimization schemes based on the extension principle

  • V. I. Gurman
  • Ni Min Quang 
  • M. Yu. Ukhin
Determinate Systems

Abstract

A general approach to solve problems approximately via the extension principle and its realization schemes are described. The main attention is paid to nontraditional schemes of transformation of models via the extension principle with regard for the specifics of applied optimal control problems, viz., convexation of sets of velocities of nonlinear systems for enhancing the effectiveness of iterative control refinement procedures, reduction of the order of a system through elimination of passive relations in degenerate problems, construction of a ranked family of models, and sequential approximation procedures. The approach in general is a good base for realizing approximation schemes with accuracy estimates.

PACS number

02.30.Yy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krotov, V.F., Solution Methods for Variational Problems Based on Sufficient Conditions of Absolute Minimum. I, Avtom. Telemekh., 1962, no. 12, pp. 1572–1583.Google Scholar
  2. 2.
    Krotov, V.F., Bukreev, V.Z., and Gurman, V.I., Novye metody variatsionnogo ischisleniya v dinamike poleta (New Variational Methods in Flight Dynamics), Moscow: Mashinostroenie, 1969.Google Scholar
  3. 3.
    Krotov, V.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Methods and Problems of Optimal Control), Moscow: Nauka, 1973.Google Scholar
  4. 4.
    Gurman, V.I., Vyrazhdennye zadachi optimal’nogo upravleniya (Degenerate Optimal Control Problems), Moscow: Nauka, 1977.Google Scholar
  5. 5.
    Gurman, V.I., Printsip rasshireniya v zadachakh upravleniya (The Extension Principle in Control Problems), Moscow: Nauka, 1985.Google Scholar
  6. 6.
    Novye metody uluchsheniya upravlyaemykh protsessov (New Refinement Methods for Control Processes), Novosibirsk: Nauka, 1987.Google Scholar
  7. 7.
    Krotov, V.F., Global Methods in Optimal Control, New York: Marcel Dekker, 1996.Google Scholar
  8. 8.
    Dykhta, V.A. and Samsonyuk, O.N., Optimal’noe impul’snoe upravlenie (Optimal Pulse Control), Moscow: Fizmatlit, 2000.Google Scholar
  9. 9.
    Ioffe, A.D. and Tikhomirov, V.M., Teoriya ekstremal’nykh zadach (Theory of Extremal-Value Problems), Moscow: Nauka, 1974.Google Scholar
  10. 10.
    Chernous’ko, F.L. and Kolmanovskii, V.B., Computational and Approximate Methods of Optimal Control, Mat. Analiz, Itogi Nauki i Tekhniki, 1977, vol. 14, pp. 101–166.Google Scholar
  11. 11.
    Moiseev, N.N., Chislennye metody v teorii optimal’nykh sistem (Numerical Methods in Optimal Systems Theory), Moscow: Nauka, 1971.Google Scholar
  12. 12.
    Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solution of Optimal Control Problems), Moscow: Nauka, 1978.Google Scholar
  13. 13.
    Vasil’ev, F.P., Chislennye metody resheniya ekstremal’nykh zadach (Numerical Methods of Solving Extremal-Value Problems), Moscow: Nauka, 1980.Google Scholar
  14. 14.
    Evtushenko, Yu.G., Metody resheniya ekstremal’nykh zadach i ikh primeneniya v sistemakh optimizatsii (Solution Methods for Extremal Problems and Their Application in Optimization Systems), Moscow: Nauka, 1982.Google Scholar
  15. 15.
    Gabasov, R. and Kirillova, F.M., Konstruktivnye metody optimizatsii. Chast’ 2 (Constructive Optimization Methods. Part 2), Minsk: Universitetskoe, 1984.Google Scholar
  16. 16.
    Dikusar, V.V. and Milyutin, A.A., Kachestvennye i chislennye metody v principe maksimuma (Qualitative and Numerical Methods of the Maximum Principle), Moscow: Nauka, 1989.Google Scholar
  17. 17.
    Srochko, V.A., Iteratsionnye metody resheniya zadach optimal’nogo upravleniya (Iterative Solution Methods for Optimal Control Problems), Moscow: Fizmatlit, 2000.Google Scholar
  18. 18.
    Warga, J., Relaxed Variational Problems, J. Math. Anal. Appl., 1962, vol. 4, no. 1, pp. 111–127.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Gamkrelidze, R.V., Moving Optimal Modes, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no. 6, pp. 1243–1245.zbMATHMathSciNetGoogle Scholar
  20. 20.
    Filippov, A.F., Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations with Discontinuous Right Side), Moscow: Nauka, 1985.Google Scholar
  21. 21.
    Veliov, V., On the Discretization of Differential Inclusions, Proc. Int. Conf. Numerical Methods Appl., Sofia, 1988.Google Scholar
  22. 22.
    Gurman, V.I. and Ukhin, M.Yu., The Extension Principle in Control Problems: Constructive Methods and Applied Problems, Moscow: Fizmatlit, 2005.Google Scholar
  23. 23.
    Krotov, V.F., Computational Algorithms of Solution and Optimization of the Controllable Equation Systems. I, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1975, no. 5, pp. 3–15.Google Scholar
  24. 24.
    Kolokol’nikova, G.A., Generalized Solutions of Optimal Control Problems with Linear Unbounded Controls via Multiple Transformations, Diff. Uravn., 1992, vol. 28, no. 11, pp. 1919–1932.MathSciNetGoogle Scholar
  25. 25.
    Gurman, V.I. and Ukhin, M.Yu., Turnpike Solutions for Optimization of Regional Development Strategies, Avtom. Telemekh., 2004, no. 4, pp. 108–118.Google Scholar
  26. 26.
    Miller, B.M. and Rubinovich, E.Ya., Optimizatsiya dinamicheskikh sistem s impul’snymi upravleniyami (Optimization of Dynamic Impulsive Control Systems), Moscow: Fizmatlit, 2005.Google Scholar
  27. 27.
    Zavalishchin, S.T. and Sesekin, A.N., Impul’snye protsessy: modeli i prilozheniya (Pulse Processes: Models and Applications), Moscow: Nauka, 1991.Google Scholar
  28. 28.
    Vinter, R.B. and Pereira, F.M., A Maximum Principle for Optimal Processes with Discontinuous Trajectories, SIAM J. Control Optim., 1988, vol. 26, no. 1, pp. 205–229.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Pereira, F.L. and Silva, G.N., Measure-Controlled Differential Inclusions, Diff. Uravn., 2004, vol. 40, no. 8, pp. 1059–1067.MathSciNetGoogle Scholar
  30. 30.
    Metody uluchsheniya v vychislitel’nom eksperimente (Refinement Methods for Computational Experiments), Novosibirsk: Nauka, 1988.Google Scholar
  31. 31.
    Baturin, V.A. and Verkhozina, I.O., Methods of Searching for Higher-Order Impulsive Modes in Optimal Control Problems, Optimiz., Upravl., Intellekt, 2000, no. 4, pp. 56–66.Google Scholar
  32. 32.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Solution Methods for Ill-defined Problems), Moscow: Nauka, 1986.Google Scholar
  33. 33.
    Vasil’eva, A.B. and Dmitriev, M.G., Singular Perturbations in Optimal Control Problems, Itogi Nauki i Tekhniki, Mat. Analiz, 1982, vol. 20, pp. 3–77.MathSciNetGoogle Scholar
  34. 34.
    Dmitriev, M.G. and Ni Min Quang, Contrast Structures in Simple Vector Variational Problems and Their Asymptotic Behavior, Avtom. Telemekh., 1998, no. 5, pp. 41–52.Google Scholar
  35. 35.
    Gurman, V.I. and Znamenskaya, L.N., Oscillation Control with Limited Control Resources, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2001, no. 1, pp. 41–49.Google Scholar
  36. 36.
    Modeli upravleniya prirodnymi resursami (Models for Natural Resource Control), Gurman, V.I., Ed., Moscow: Nauka, 1981.Google Scholar
  37. 37.
    Modelirovanie sotsio-ekologo-ekonomicheskoi sistemy regiona (Modeling of Socio-Ecological-Economic System of a Region), Gurman, V.I. and Ryumina, E.V., Eds., Moscow: Nauka, 2001.Google Scholar
  38. 38.
    Gurman, V.I., The Extension Principle in the Problems of Sustainable Development Constructive Methods and Applied Problems, Moscow: Fizmatlit, 2005.Google Scholar
  39. 39.
    Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Motion of an Artificial Satellite Relative to Its Center of Mass), Moscow: Nauka, 1965.Google Scholar
  40. 40.
    Ioslovich, I.V., Optimal Stabilization of a Satellite in an Inertial Coordinate System, Astronautica Acta, 1962, vol. 13, no. 1, pp. 37–47.Google Scholar
  41. 41.
    Gurman, V.I. and Baturin, V.A., Construction and Estimation of Approximate Optimal Control Design, Ivz. Akad. Nauk SSSR, Tekh. Kibern., 1978, no. 4, pp. 183–187.Google Scholar
  42. 42.
    Gurman, V. and Nikiforova, L., Extension Principle in Modeling and Optimal Control: A Case Study for Helicopter Maneuvering, 10th IFAC Workshop, Haifa, Israel, 1995.Google Scholar
  43. 43.
    Nikiforova, L.N. and Ukhin, M.Yu., Approximate Discrete Optimal Control Design, Sb. Nauch. Tr. posv. 20-letiyu IPS (20th Anniversary of the Institute of Control Sciences: A Memorial Volume), Moscow: Fizmatlit, 2004, pp. 377–386.Google Scholar
  44. 44.
    Tyatyushkin, A.I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem (Numerical Methods and Software for Optimization of Controllable Systems), Novosibirsk: Nauka, 1992.Google Scholar
  45. 45.
    Belyshev, D.V. and Gurman, V.I., Intelligent Optimal Control Procedures, Avtom. Telemekh., 2002, no. 5, pp. 147–155.Google Scholar
  46. 46.
    Belyshev, D.V. and Gurman, V.I., A Program Packet for Multi-Method Optimal Control Procedures, Avtom. Telemekh., 2003, no. 6, pp. 60–67.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. I. Gurman
    • 1
  • Ni Min Quang 
    • 2
  • M. Yu. Ukhin
    • 1
  1. 1.Progam Systems InstituteRussian Academy of SciencesPereslavl-ZalesskiiRussia
  2. 2.East Chinese Pedagogical UniversityShanghaiChina

Personalised recommendations