Advertisement

Automation and Remote Control

, Volume 67, Issue 4, pp 517–528 | Cite as

Nonlinear dynamic systems: Their canonical decomposition based on invariant functions

  • A. N. Zhirabok
Determinate Systems

Abstract

Decomposition of nonlinear dynamic systems based on invariant functions similar to the canonical decomposition of uncontrollable nonobservable linear systems is described.

PACS number

05.45.-a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mironovskii, L.A., Analogovye i gibridnye modeli dinamicheskikh sistem. Skalyarnye sistemy (Analog and Hybrid Models of Dynamic Systems. Scalar Systems), Leningrad: LIAP, 1985.Google Scholar
  2. 2.
    Isidori, A., Nonlinear Control Theory. An Introduction, Berlin: Springer-Verlag, 1989.Google Scholar
  3. 3.
    Zhirabok, A.N. and Shumskii, A.E., Functional Diagnostics of Continuous Dynamic Systems Described by Equations with Polynomial Right Side, Avtom. Telemekh., 1987, no. 8, pp. 154–164.Google Scholar
  4. 4.
    Shumskii, A.E., Decomposition of Nonlinear Dynamic Systems, Kibern. Vychisl. Tekh., 1989, no. 81, pp. 44–50.Google Scholar
  5. 5.
    Zhirabok, A.N., An Algebraic Observability Criterion for Nonlinear Discrete Systems, Kibern. Vychisl. Tekh., 1992, no. 95, pp. 6–12.Google Scholar
  6. 6.
    Zhirabok, A.N. and Shlikht, A.G., Analysis of Controllability of Dynamic Systems, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1992, no. 1, pp. 101–107.Google Scholar
  7. 7.
    Zhirabok, A.N. and Shlikht, A.G., An Algebraic Approach to Analysis of Observability of Discrete Systems, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1992, no. 4, pp. 113–119.Google Scholar
  8. 8.
    Zhirabok, A.N. and Shumskii, A.E., Upravlyaemost’, nablyudaemost’, dekompozitsiya nelineinykh dinamicheskikh sistem (Controllability, Observability, and Decomposition of Nonlinear Dynamic Systems), Vladivostok: Dal’nevost. Gos. Tekh. Univ., 1993.Google Scholar
  9. 9.
    Zhirabok, A.N., Duality between Controllability and Observability of Nonlinear Dynamic Systems, Izv. Ross. Akad. Nauk, Teor. Syst. Upravlen., 1998, no. 1, pp. 5–8.Google Scholar
  10. 10.
    Mironovskii, L.A., Invarianty matematicheskikh modelei (Invariants of Mathematical Models), St. Petersburg: SPbGAAP, 1993.Google Scholar
  11. 11.
    Zhirabok, A.N., Algebraic Methods of Investigation of Complex Technical Systems, Tr. Prof. Kluba, 2002, no. 7, pp. 30–37.Google Scholar
  12. 12.
    Fitts, J.M., On the Observability of Nonlinear Systems with Application to Nonlinear Regression Analysis, Inform. Sci., 1972, vol. 4, pp. 125–156.MathSciNetGoogle Scholar
  13. 13.
    Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. N. Zhirabok
    • 1
  1. 1.Institute of Automation and Control Processes, Far-Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations