Advertisement

Automation and Remote Control

, Volume 67, Issue 3, pp 493–511 | Cite as

Control of the medical treatment of AIDS

  • V. V. Velichenko
  • D. A. Pritykin
Control in Biological Systems and Medicine

Abstract

This work deals with the statement and the solution of problems of optimal control of the human immune system affected by a human immunodeficiency virus (HIV). The solution is performed by the numerical methods of optimal control on the basis of a dynamic model of the development of an infection in the organism of a human being. The results illustrate the possibilities for the use of mathematical methods in the problem of extending the life of HIV-infected patients.

PACS number

07.05.Tp 02.30.Yy 87.80.-y 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Webb, G.F. and Kirschner, D.E., Using Mathematics to Understand HIV Immune Dynamics, Notices Am. Math. Soc., February, 1996.Google Scholar
  2. 2.
    Webb, G.F. and Kirschner, D.E., Resistance, Remission, and Qualitative Differences in HIV Chemotherapy, Emerging Infections Diseases, 1997, vol. 3, no. 3.Google Scholar
  3. 3.
    Velichenko, V.V., Technical Intellect, Intellect. Sistemy, 1996, vol. 1, no. 1, pp. 5–18.MathSciNetGoogle Scholar
  4. 4.
    Marchuk, G.I., Romanyukha, A.A., and Bocharov, G.A., Mathematical Modeling of Antiviral Immune Response at Virus Hepatitis B, in Mat. voprosy kibern. (Mathematical Question of Cybernetics), Yablonskii S.V., Ed., Moscow: Nauka, 1989, pp. 5–71.Google Scholar
  5. 5.
    Updated Recommendations of the International AIDS Society, USA Panel, July, 2000.Google Scholar
  6. 6.
    Butler, S., Kirschner, D., and Lenhart, S., Optimal Control of the Chemotherapy Affecting the Infectivity of HIV, in Math. Biology Medicine, Singapore: World Scientific, 1995, vol. 6.Google Scholar
  7. 7.
    Kirschner, D., Lenhart, S., and Serbin, S., Optimal Control of the Chemotherapy of HIV, J. Math. Biology, 1997, vol. 35, pp. 775–792.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hem, Raj Joshi, Optimal Control of an HIV Immunology Model, Optim. Control Appl. Methods, 2002, vol. 23, pp. 199–213.Google Scholar
  9. 9.
    Stengel, R.F., Ghigliazza, R., Rulkarni, N., and Laplace, O., Optimal Control of Innate Immune Response, Optim. Control Appl. Methods, 2002, vol. 23, pp. 91–104.Google Scholar
  10. 10.
    Wodarz, D. and Nowark, M.A., Mathematical Models of HIV Pathogenesis and Treatment, Bioessays, 2002, vol. 23, pp. 1178–1187.Google Scholar
  11. 11.
    Shudo, E. and Iwasa, Y., Dynamic Optimization of Host Defense, Immune Memory, and Post-Infection Pathogen Levels in Mammols, J. Theoret. Biology, 2004, vol. 24, pp. 17–29.Google Scholar
  12. 12.
    Velischenko, V.V., The Numerical Method of Solution of Optimal Control Problems, Zh. Vychisl. Mat. Mat. Fiz., 1966, vol. 6, no. 4, pp. 636–647.Google Scholar
  13. 13.
    Velischenko, V.V. and Pritykin, D.A., Artificial Intellect and Social Dynamics of the HIV-Infected Human Immune System, Intellect. Sistemy, 2000, vol. 6, issue 1–4.Google Scholar
  14. 14.
    Pritykin, D.A., Control of Dynamics of Interaction of the Human Immune System with HIV, in Nekotorye problemy fundamental’noi i prikladnoi matematiki, Sb. Nauchn. Trud. (Some Problems of Fundamental and Applied Mathematics), Moscow, 2003, pp. 78–94.Google Scholar
  15. 15.
    Pokrovsckii, V.V., Ermak, T.N., Belyaeva, V.V., and Yurin, O.G., HIV Infection. Clinic, Diagnosis, and Therapy, Moscow, GEOTAR MEDITSINA, 2000.Google Scholar
  16. 16.
    Galaktionov, V.G., Immunologiya. Uchebnik (Immunology. Manual), Moscow: Niva Rossii, 2000.Google Scholar
  17. 17.
    Carr, A. and Cooper, D., Primary HIV Infection, in The Clinical Management of AIDS, Sandre, M.A. and Volberding, A., Eds., Philadelphia: Sanders, 1997.Google Scholar
  18. 18.
    Gains, H., Sedow, M.A.E., Sannetburg, A., et al., Antibody Response to Primary HIV-Infection, Lancet, 1987, vol. 1, pp. 1249–1253.Google Scholar
  19. 19.
    Fischi, M.A., Richman, D.D., Caueco, M.H., et al., The Efficacy of AZT in Treatment of Patients with AIDS and AIDS-Related Complex, N. Engl. Med., 1987, vol. 317, pp. 185–191.Google Scholar
  20. 20.
    Delta Coordinating Committee. Delta: A Randomised-Doubleblinded Controlled Trial Comparing Combination of Zidovudine plus Didanosin or Zalcitabine with Zidovudine alone in HIV-Infected Individuals, Lancet, 1996, vol. 348, pp. 283–291.Google Scholar
  21. 21.
    Indinavir Sulfate AHES Drug Information 96. Current Development, Bethesda: American Society of Hospital Pharmatics, 1996, pp. 24–28.Google Scholar
  22. 22.
    Pennisi, E. and Cohen, J., Eradicating HIV from a Patient: Not just a Dream?, Science, 1996, vol. 272, p. 1884.Google Scholar
  23. 23.
    Philips, A.N., Sabin, C.A., Moscroft, A., and Janossy, G., Antiviral Therapy, Nature, 1995, vol. 375, p. 195.Google Scholar
  24. 24.
    Ermbretson, J., Zupancic, M., Ribas, J.L., Burke, R.A., Rucz, P., Tenner-Racz, K., and Haase, A.T., Massive Covert Infection of Helper T Lymphocytes and Macrophages by HIV during the Incubation Period of AIDS, Nature, 1993, vol. 362, pp. 359–362.Google Scholar
  25. 25.
    Perelson, A.S., Neumann, A.U., Markowitz, M., Leonerd, J.M., and Ho, D., Dynamics in VIVO: Clearance Rate, Infected Cell Lifespan, and Viral Generation Time, Science, 1996, vol. 271, pp. 1582–1586.Google Scholar
  26. 26.
    Collier, A.C., Coombs, R.W., Schoenfeld, D.A., Basset, R.L., Timpone, J., Baruch, A., et al., Treatment of Human Immunodeficiency Virus Infection with Saquinavir, Zidovudine, and Zalcitabine, N. Engl. J. Med., 1996, vol. 334, pp. 1011–1017.CrossRefGoogle Scholar
  27. 27.
    Hammer, S.M., Squires, K.E., Hughes, M.D., et al., Controlled Trial of Two Nucleoside Analogues plus Indinavir in Persons with Human Immunodeficiency Virus Infection and CD4 Cell Counts of 200/ml or less, N. Engl. J. Med., 1997, vol. 337, pp. 725–733.CrossRefGoogle Scholar
  28. 28.
    Gulick, R.M., Mellors, J.W., Havlir, D., et al., Treatment with Indinavir, Zidovudine, and Lamivudine in Adults with Human Immunodeficiency Virus Infection and Prior Antiretoviral Therapy, N. Engl. J. Med., 1997, vol. 337, pp. 734–739.CrossRefGoogle Scholar
  29. 29.
    Perelson, A.S., Essunger, P., and Cao, Y., Decay Characteristics of HIV-1 Infected Compartments During Combination Therapy, Nature, 1997, vol. 387, pp. 188–191.CrossRefGoogle Scholar
  30. 30.
    Velichenko, V.V., To the Problem on Minimum of Maximum Overload, Kosm., Issled., 1972, vol. 10, issue 5, pp. 700–710.Google Scholar
  31. 31.
    Velichenko, V.V., On Problems of Optimal Control for Equations with Disconnected Right Sides, Avtom. Telemekh., no. 7, pp. 20–30.Google Scholar
  32. 32.
    Velichenko, V.V., Optimal Control of Composite Systems, Dokl. Akad. Nauk SSSR, 1967, vol. 176, no. 4, pp. 754–756.zbMATHMathSciNetGoogle Scholar
  33. 33.
    Velichenko, V.V., Optimal Control Problems with Intermediate Conditions, in Operations Research, Moscow: Vychisl. Tsentr Akad. Nauk SSSR, 1974, vol. 4, pp. 126–145.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. V. Velichenko
    • 1
  • D. A. Pritykin
    • 1
  1. 1.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations