Automation and Remote Control

, Volume 67, Issue 3, pp 461–471 | Cite as

A control problem under incomplete information

  • M. S. Blizorukova
  • V. I. Maksimov
Adaptive and Robust Systems


A robust control for a system of ordinary differential equations is studied under the assumption that the system, along with control, is acted upon by a noncontrollable perturbation. An algorithm, which is stable to information noises and computation errors, is designed for solving the problem of control under incomplete information on the phase trajectory (measurements of part of coordinates).

PACS number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.Google Scholar
  2. 2.
    Krasovskii, N.N., Upravlenie dynamicheskoi sistemoi (Control for a Dynamic System), Moscow: Nauka, 1985.Google Scholar
  3. 3.
    Kryazhimskii, A.V. and Osipov, Yu.S., Modeling of Control in a Dynamic System, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1983, no. 2, pp. 51–60.Google Scholar
  4. 4.
    Osipov, Yu.S., Kryazhimskii, A.V., and Maksimov, V.I., Zadachi dinamicheskoi regulyarizatsii dlya sistem s raspredelennymi parametrami (Dynamic Regularization of Distributed-Parameter Systems), Sverdlovsk: Inst. Mat. Mekh., 1991.Google Scholar
  5. 5.
    Kryazhimskii, A.V. and Osipov, Yu.S., Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, London: Gordon and Breach, 1995.Google Scholar
  6. 6.
    Osipov, Yu.S., Vasil’ev, F.P., and Potapov, M.M., Osnovy metoda dinamicheskoi regulyarizatsii (Principles of Dynamic Regularization Principles), Moscow: Mosk. Gos. Univ., 1999.Google Scholar
  7. 7.
    Krasovskii, N.N. and Osipov, Yu.S., Control with Incomplete Information, Izv. Akad. Nauk SSSR, Mekh. Tverdogo Tela, 1973, no. 4, pp. 161–168.Google Scholar
  8. 8.
    Chernous’ko, F.L. and Melikyan, A.A., Igrovye zadachi upravleniya i poiska (Control and Search Game Problems), Moscow: Nauka, 1978.Google Scholar
  9. 9.
    Kurzhanskii, A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation under Uncertainty), Moscow: Nauka, 1977.Google Scholar
  10. 10.
    Petrosyan, L.A., Differentsial’nye igry presledovaniya (Differential Pursuit Games), Leningrad: Leningr. Gos. Univ., 1977.Google Scholar
  11. 11.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Solution Methods for Ill-defined Problems), Moscow: Nauka, 1978.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. S. Blizorukova
    • 1
  • V. I. Maksimov
    • 1
  1. 1.Institute of Mathematics and Mechanics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations