Advertisement

Automation and Remote Control

, Volume 67, Issue 3, pp 435–451 | Cite as

Generalized birth-death processes and their application to the ageing models

  • V. V. Rykov
Queueing Systems

Abstract

The generalized birth-death processes were introduced to model ageing of objects of different nature. The results obtained were compared with the model based on the conventional birth-death processes.

PACS number

02.50.Fz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lisniansky, A. and Levitin, G., Multi-State System Reliability Assessment, Singapore: World Scientific, 2003.Google Scholar
  2. 2.
    Dimitrov, B., Rykov, V., and Stanchev, P., On Multi-state Reliability Systems, Proc. MMR-2002, Trondheim, June 17–21, 2002.Google Scholar
  3. 3.
    Rykov, V. and Dimitrov, B., On Multi-state Reliability Systems, in Proc. Int. Seminar, Petrozavodsk, September 8–13, 2002, pp. 128–135 (see also http://www.jip.ru/2002-2-2-2002.htm).
  4. 4.
    Rykov, V., Dimitrov, B., Green, D., Jr., and Stanchev, P., Reliability of Complex Hierarchical Systems with Fault Tolerance Units, in Proc. MMR-2004, Santa Fe, June, 2004 (Published on CD).Google Scholar
  5. 5.
    Dimitrov, B., Green, D., Rykov, V., and Stanchev, P., Reliability Model for Biological Objects. Longevity, Ageing and Degradation Models, Trans. First Russian-French Conf. (LAD-2004), St. Petersburg, June 7–9, 2004, Antonov, V., Huber, C., Nikulin, M., and Polischook, V., Eds., St. Petersburg: S.-Peterburg. Gos. Polytechnical Univ., 2004, vol. 2, pp. 230–240.Google Scholar
  6. 6.
    Rykov, V. and Efrosinin, D., Reliability Control of Fault Tolerance Units, in Abstracts 4 Int. Conf. Math. Methods Reliability (MMR-2004), Santa Fe, 21–25 July, 2004 (Published on CD).Google Scholar
  7. 7.
    Rykov, V. and Efrosinin, D., Reliability Control of Biological Systems with Failures Longevity, Aging and Degradation Models, Trans. First Russian-French Conf. (LAD-2004), St. Petersburg, June 7–9, 2004, Antonov, V., Huber, C., Nikulin, M., and Polischook, V., Eds., St. Petersburg: S.-Peterburg. Gos. Polytechnical Univ., 2004, vol. 2, pp. 241–255.Google Scholar
  8. 8.
    Rykov, V. and Buldaeva, E., On Reliability Control of Fault Tolerance Units: Regenerative Approach, Trans. XXIV Int. Seminar Stab. Probl. Stochast. Modes, September 10–17, 2004, Jurmala: Transport and Telecommunication Inst., 2004.Google Scholar
  9. 9.
    van Doorn, E.A., Quasi-stationary Distributions and Convergence to Quasi-stationarity of Birth-Death Processes, Adv. Appl. Prob., 1991, vol. 26, no. 4, pp. 683–700.Google Scholar
  10. 10.
    Kijima, M., Nair, M.G., Pollet, P.K., and van Doorn, E.A., Limiting Conditional Distributions for Birth-Death Processes, Adv. Appl. Prob., 1997, vol. 29, no. 1, pp. 185–204.Google Scholar
  11. 11.
    Karlin, S. and McGregor, J.L., The Differential Equations of Birth-and-Death Processes, and the Stieltjes Moment Problem, Trans. Am. Math. Soc., 1957, vol. 85, pp. 489–546.MathSciNetGoogle Scholar
  12. 12.
    Granovsky, B.L. and Zeifman, A., Nonstationary Queues: Estimation of the Rate of Convergence, Queuing Sys., 2004, vol. 46, no. 3–4, pp. 363–388.MathSciNetGoogle Scholar
  13. 13.
    Korolyuk, V.S. and Turbin, A.F., Polumarkovskie protsessy i ikh prilozheniya (Semi-Markov Processes and Their Applications), Kiev: Naukova Dumka, 1976.Google Scholar
  14. 14.
    McDonald, D., On Semi-Markov and Semi-regenerative Processes. I, II, Z. Wahrch. Verw. Geb., 1978, vol. 42, no. 2, pp. 261–377; Ann. Prob., 1978, vol. 6, no. 6, pp. 995–1014.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Jacod, J., Théorèms de renouvellement et classification pour les chaines semi-Markoviennes, Ann. Inst. Henri Poincaré, 1971, sect. B. 7, no. 2, pp. 83–129.Google Scholar
  16. 16.
    Petrovskii, I.G., Lektsii po teorii obyknovennykh differentsial’nykh uravnenii (Lectures on the Theory of Ordinary Differential Equations), Moscow: GITTL, 1952.Google Scholar
  17. 17.
    Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1957. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1967, vol. 2.Google Scholar
  18. 18.
    Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of Complex Variables), Moscow: Fizmatgiz, 1958.Google Scholar
  19. 19.
    Korolyuk, V.S. and Turbin, A.F., Fazovoe ukrupnenie slozhnykh sistem (Phase Agglomeration of Complex Systems), Kiev: Vishcha Shkola, 1978.Google Scholar
  20. 20.
    Korolyuk, V.S. and Korolyuk, V.V., Stochastic Models of Systems, New York: Kluwer, 1999.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. V. Rykov
    • 1
  1. 1.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations