Advertisement

Automation and Remote Control

, Volume 67, Issue 3, pp 428–434 | Cite as

A finite capacity BMAP K /G K /1 queue with the generalized foreground-background processor-sharing discipline

  • C. D’Apice
  • R. Manzo
Queueing Systems

Abstract

A queueing system with a batch Markov arrival process, several types of customers, generalized foreground-background processor-sharing discipline with minimal served length, and separate finite buffers for customers of different types or a common finite buffer for customers of all types is studied. Mathematical relations for computing the stationary joint distributions of the number of customers of all types in the system are derived.

PACS number

02.50.Fz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schrage, L., The Queue M/G/1 with Feedback to Lower Priority Queues, Manag. Sci., 1967, vol. 13, no. 7, pp. 466–474.Google Scholar
  2. 2.
    Yashkov, S.F., The Foreground-Background Processor-Sharing with Minimal Served Length Discipline, Tekh. Sredstv Svyazi. Ser. ASU, 1978, no. 2, pp. 51–62.Google Scholar
  3. 3.
    Pechinkin, A.V., Stationary Probabilities in a System with Foreground-Background Processor-Sharing Discipline, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1980, no. 5, pp. 73–77.Google Scholar
  4. 4.
    Nagonenko, V.A. and Pechinkin, A.V., The Large Traffic Intensity in a System with Foreground-Background Processor-Sharing Discipline, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1980, no. 6, pp. 62–67.Google Scholar
  5. 5.
    Pechinkin, A.V. and Tatashev, A.G., The Generalized Foreground-Background Processor-Sharing Discipline, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1981, no. 4, pp. 120–125.Google Scholar
  6. 6.
    Schassberger, R., The Steady-State Distribution of Spent Service Times Present in the M/G/1 Foreground-Background Processor-Sharing Queue, J. Appl. Prob., 1988, vol. 25, pp. 194–203.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Yashkov, V.F., Analiz ocheredei v EVM (Computer-aided Analysis of Queues), Moscow: Radio i Svyaz’, 1989.Google Scholar
  8. 8.
    Yashkov, S.F., The Foreground-Background Processor-Sharing Queue: Some Developments in Analysis, V Int. Vilnius Conf. Probability Theory and Math. Stat. Abstracts Commun., 1989, vol. II, pp. 236, 237.Google Scholar
  9. 9.
    Pechinkin, A.V., Time-Varying Characteristics of a Foreground-Background Processor-Sharing Queue, in Veroyatnost’ i ee prilozhemiya. Mat. issledovaniya (Probability and Its Application: A Mathematical Investigation), Kishinev: Shtiintsa, 1990, vol. 116.Google Scholar
  10. 10.
    Bocharov, P.P. and Pechinkin, A.V., Teoriya massovogo obsluzhivaniya (Queueing Theory), Moscow: Ross. Univ. Druzhby Narodov, 1995.Google Scholar
  11. 11.
    Pechinkin, A.V., Stationary State Probabilities of the MAP/G/1/n system with Foreground-Background Processor-Sharing Discipline, Vest. Ross. Univ. Druzhby Narodov, Ser. Prikl. Mat. Inf., 1998, no. 1, pp. 104–109.Google Scholar
  12. 12.
    Pechinkin, A.V., The BMAP/G/1/∞ System with Foreground-Background Processor-Sharing Discipline, Avtom. Telemekh., 1999, no. 10, pp. 108–114.Google Scholar
  13. 13.
    D’Apice, C. and Pechinkin, A., An MAP k/G k/1 Queue with the Generalized Foreground-Background Processor-Sharing Discipline, Proc. 11 Int. Conf. Anal. Stochastic Modelling Techn. Appl., Magdeburg, 2004, pp. 16–22.Google Scholar
  14. 14.
    Yashkov, S.F. and Yashkova, A.S., Time-Dependent Distribution of Attained Service Times for the M/G/1 Foreground-Background Processor-Sharing Queue, Trans. XXIV Int. Seminar on Stability Probl. Stochastic Models, Jurmala, 2004, pp. 156–162.Google Scholar
  15. 15.
    D’Apice, C., Manzo, R., and Pechinkin, A.V., An MAP K/G K/1 Queue System of Finite Capacity with Generalized Foreground-Background Processor-Sharing Discipline, Avtom. Telemekh., 2004, no. 11, pp. 114–121.Google Scholar
  16. 16.
    D’Apice, C., Kristofano, M.L., and Pechinkin, A.V., An MAP K/G K/1/∞ Queueing System with Generalized Foreground-Background Processor-Sharing Discipline, Avtom. Telemekh., 2004, no. 12, pp. 110–118.Google Scholar
  17. 17.
    Bocharov, P.P., D’Apice, C., Pechinkin, A.V., and Salerno, S., Queueing Theory, Utrecht: VSP, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • C. D’Apice
    • 1
  • R. Manzo
    • 1
  1. 1.University of SalernoSalernoItaly

Personalised recommendations