Advertisement

Automation and Remote Control

, Volume 67, Issue 3, pp 405–412 | Cite as

Generalized dynamic programming: A variables freezing method

  • D. E. Chernov
Determinate Systems
  • 30 Downloads

Abstract

A variables freezing method is designed for widening the possibilities of numerical application of generalized dynamic programming algorithms. Reducing the size of the memory under certain conditions, the method surmounts the “dimensional curse.” This paper is the continuation of [1–3].

PACS number

02.60.Cb 02.70.-c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malyshev, V.V. and Chernov, D.E., Generalized Dynamic Programming: General Principles, Avtom. Telemekh., 1993, no. 12, pp. 101–110.Google Scholar
  2. 2.
    Malyshev, V.V. and Chernov, D.E., Generalized Dynamic Programming: Applications, Avtom. Telemekh., 1994, no. 1, pp. 117–127.Google Scholar
  3. 3.
    Chernov, D.E., Generalized Dynamic Programming: Two New Applications, Avtom. Telemekh., 1997, no. 4, pp. 103–112.Google Scholar
  4. 4.
    Malyshev, V.V. and Chernov, D.E., Osnovy teorii posledovatel’nykh operatorov (Elements of the Theory of Sequential Operators), Available from VINITI, 1987, Moscow, no. 6149-B87.Google Scholar
  5. 5.
    Bertsekas, D.P. and Sreve, S.E., Stochastic Optimal Control, New York: Academic, 1978. Translated under the title Stokhasticheskoe optimal’noe upravlenie, Moscow: Nauka, 1985.Google Scholar
  6. 6.
    Malyshev, V.V. and Chernov, D.E., Reduction of Computation Volume via the Dynamic Programming Method, Avtomatika, 1988, no. 5, pp. 52–58.Google Scholar
  7. 7.
    Malyshev, V.V. and Chernov, D.E., Dynamic Control Problems with Probabilistic Criteria, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1988, no. 4, pp. 213–217.Google Scholar
  8. 8.
    Chernov, D.E., Theory of Sequential Application of Operators in Probabilistic Optimization Problems, in Voprosy sovershenstvovaniya informatsionno-izmeritel’nykh i upravlyayushchikh sistem vozdyshnykh sudov (Refinement of Aircraft Measurement and Control Systems), Kiev: KIIGA, 1989, pp. 34–48.Google Scholar
  9. 9.
    Chernov, D.E., Dynamic Programming. Freezing of Variables for Reduction of Computations, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1990, no. 3, pp. 121–127.Google Scholar
  10. 10.
    Chernov, D.E. and Leonov, V.V., Vychislenie mnogomernykh integralov veroyatnosti v zadachakh optimalnogo upravleneniya letatel’nymi apparatami. Upravlenie i navigatsiya LA v usloviyakh parametricheskoi neopredelennosti (Computation of Multidimensional Probability Integrals in Problems of Optimal Control for Flying Vehicles. Control and Navigation of Flying Vehicles under Parametric Uncertainty), Moscow: MAI, 1991, pp. 57–62.Google Scholar
  11. 11.
    Chernov, D.E., Determinant Computation and Matrix Inversion through Generalized Dynamic Programming, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1993, no. 6, pp. 214–221.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • D. E. Chernov
    • 1
  1. 1.Automobile Road Engineering InstituteMoscowRussia

Personalised recommendations