Automation and Remote Control

, Volume 67, Issue 3, pp 393–404 | Cite as

A conditional optimal control problem and its adaptive solution method

  • V. Yu. Tertychnyi-Dauri
Determinate Systems


Optimal design of dynamic control systems is studied under the assumption that their motion obeys, along with constraints for ensuring the minimum of the quality functional, additional conditions in the form of time-varying kinematic relations. An alternative method of adjustable Lagrange multipliers, besides the variational approach, is designed to solve this problem. The adaptive approach, in turn, ensures that the aim conditions are satisfied and the solutions generated by the estimation algorithm exponentially converge to their true values.

PACS number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El’sgol’ts, L.E., Differentsial’nye uravneniya i variatsionnoe ischislenie (Differential Equations and the Calculus of Variations), Moscow: Nauka, 1969.Google Scholar
  2. 2.
    Yang, L., Lectures on the Calculus of Variations and Optimal Control Theory, London: Saunders, 1969. Translated under the title Lektsii po variatsionnomy ischisleniyu i optimal’nomu upravleniyu, Moscow: Mir, 1974.Google Scholar
  3. 3.
    Gel’fand, I.M. and Fomin, S.V., Variatsionnoe ischislenie (Variational Calculus), Moscow: Fizmatgiz, 1961.Google Scholar
  4. 4.
    Spravochnik po teorii avtomaticheskogo upravleniya (Automatic Control Theory: A Reference Guide), Krasovskii, A.A., Ed., Moscow: Nauka, 1987.Google Scholar
  5. 5.
    Tertychnyi-Dauri, V.Yu., Adaptivnaya mekhanika (Adaptive Mechanics), Moscow: Nauka, 1998.Google Scholar
  6. 6.
    Tertychnyi-Dauri, V.Yu., Equivalence of Optimization Criteria in the General Adaptive Design of Lagrange Control Systems, Avtom. Telemekh., 1996, no. 3, pp. 116–127.Google Scholar
  7. 7.
    Kalman, R., A General Theory of Control Systems: Theory of Discrete, Optimal, and Self-Adjusting Systems, Proc. I Int. IFAC Congress, Moscow: Akad. Nauk SSSR, 1961, vol. 2, pp. 521–547.Google Scholar
  8. 8.
    Krasovskii, N.N., Teoriya upravleniya dvizheniem (Motion Control Theory), Moscow: Nauka, 1968.Google Scholar
  9. 9.
    Tsypkin, Ya.Z., Adaptatsiya i obuchenie v avtomaticheskikh sistemakh (Adaptation and Learning in Automatic Systems), Moscow: Nauka, 1968.Google Scholar
  10. 10.
    Loitsyanskii, L.G. and Lur’e, A.I., Kurs teoreticheskoi mekhaniki (A Course in Theoretical Mechanics), Moscow: Nauka, 1983, vol. 2.Google Scholar
  11. 11.
    Tertychnyi-Dauri, V.Yu., Giperreaktivnaya mekhanika (Hyperjet Mechanics), Moscow: Fizmatlit, 2004.Google Scholar
  12. 12.
    Chernous’ko, F.L. and Kolmanovskii, V.B., Optimal’noe upravlenie pri sluchainykh vozmyshcheniyakh (Optimal Control under Random Perturbations), Moscow: Nauka, 1978.Google Scholar
  13. 13.
    Lee, E.B. and Markus, L., Foundations of Optimal Control Theory, New York: Wiley, 1967. Translated under the title Osnovy teorii optimal’nogo upravleniya, Moscow: Nauka, 1972.Google Scholar
  14. 14.
    Tertychnyi-Dauri, V.Yu., Solution of Variational Dynamic Problems under Parametric Uncertainty, Prob. Peredachi Inform., 2005, vol. 41, no. 1, pp. 53–67.zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. Yu. Tertychnyi-Dauri
    • 1
  1. 1.State Institute of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations