Advertisement

Automation and Remote Control

, Volume 67, Issue 3, pp 361–392 | Cite as

Algebraic decomposition of discrete functions

  • V. S. Vykhovanets
Determinate Systems

Abstract

Consideration was given to the functional decomposition of the discrete systems which is reducible to the functional decomposition of the discrete functions, where by the decomposition is meant the representation of a function by a formula in the basis of unary and binary operations. The algebraic decomposition in an algebra consisting of two binary operations and functions of two variables was studied. A procedure of formula design on the basis of composition of repetition-free subformulas was substantiated. Both exact and asymptotic complexity estimates of the designed formulas were given.

PACS number

02.30.-f 02.10.-v 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boole, G., The Laws of Thought, London: Macmillan, 1854.Google Scholar
  2. 2.
    Zhegalkin, I.I., On the Technique of Calculating Propositions in the Symbolic Logic, Mat. Sb., 1927, vol. 43, pp. 9–28.Google Scholar
  3. 3.
    Shannon, C.E., The A Symbolic Analysis of Relay and Switching Circuits, Trans. Am. Inst. Electrical Eng., 1938, vol. 57, p. 713.Google Scholar
  4. 4.
    Shannon, C.E., The Synthesis of Two-Terminal Switching Circuits, Bell Syst. Techn. J., 1949, vol. 28, no. 1, pp. 59–98.MathSciNetGoogle Scholar
  5. 5.
    Gavrilov, M.A., Relay-contact Circuits with Gate Elements, Izv. Akad. Nauk SSSR, OTN, 1945, no. 3, pp. 153–164.Google Scholar
  6. 6.
    Gavrilov, M.A., Methods of Designing the Relay-contact Circuits, Elektrichestvo, 1946, no. 2, pp. 54–59.Google Scholar
  7. 7.
    Ashenhurst, R.L., The Decomposition of Switching Functions, Bell Laboratory Report, no. BL-1(11), 1952, pp. 541–642.Google Scholar
  8. 8.
    Semon, W.L., Characteristic Numbers and Their Use in the Decomposition of Switching Functions, Proc. ACM, 1952, vol. 17, pp. 273–280.MathSciNetGoogle Scholar
  9. 9.
    Povarov, G.N., On Functional Separability of the Boolean Functions, Dokl. Akad. Nauk SSSR, 1954, vol. 94, pp. 801–803.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Reed, L.S., A Class of Multiple Error Correction Codes and Their Decoding Scheme, IRE Trans. Inform. Theory, 1954, vol. 4, pp. 38–42.CrossRefGoogle Scholar
  11. 11.
    Muller, D.E., Application of Boolean Algebra to Switching Circuit Design and to Error Detection, IRE Trans. Electron. Comput., 1954, vol. EC-3, pp. 6–12.Google Scholar
  12. 12.
    Curtis, H.A., Non-disjunctive Decomposition, Bell Laboratory Report, 1958, no. 19, p. 49.Google Scholar
  13. 13.
    Akers, S.B., On a Theory of Boolean Functions, J. Soc. Industrial Appl. Math., 1959, vol. 7, no. 4, pp. 487–498.zbMATHGoogle Scholar
  14. 14.
    Roth, J.P., Minimization over Boolean Trees, IBM J., 1960, vols. 4, 5, pp. 543–555.MathSciNetGoogle Scholar
  15. 15.
    Roth, J.P. and Karp, R.M., Minimization over Boolean Graphs, IBM J. Res. Dev., 1962, vol. 6, no. 2, pp. 227–238.MathSciNetGoogle Scholar
  16. 16.
    Kuznetsov, A.V., On Repetition-free Contact Circuits and Repetition-free Superpositions of the Algebra of Logic, Proc. Steklov Mat. Inst., 1958, vol. 51, pp. 186–225.zbMATHGoogle Scholar
  17. 17.
    Nicheporuk, E.I., On Design of Circuits Using Linear Transformations of Variables, Dokl. Akad. Nauk SSSR, 1958, vol. 123, no. 4, pp. 610–612.MathSciNetGoogle Scholar
  18. 18.
    Maitra, K.K., Cascaded Switching Networks of Two-input Flexible Cells, IRE Trans. Electron. Comput., 1962, vol. TC-11, pp. 136–143.MathSciNetGoogle Scholar
  19. 19.
    Lee, C.Y., Representation of Switching Circuits by Binary Decision Programs, Bell Syst. Techn. J., 1959, vol. 38, no. 4, p. 985.zbMATHGoogle Scholar
  20. 20.
    Akers, S.B., Binary Decision Diagrams, IEEE Trans. Comput., 1978, vol. C-27, no. 6, pp. 509–516.Google Scholar
  21. 21.
    Karpovskii, M.G. and Moskalev, E.S., Realization of the Undefined Functions of the Algebra of Logic by Expansion in Orthogonal Series, Avtom. Telemekh., 1970, no. 8, pp. 89–99.Google Scholar
  22. 22.
    Lechner, R.J., Harmonic Analysis of Switching Functions, in Recent Developments in Switching Theory, New York: Academic, 1971, pp. 121–228.Google Scholar
  23. 23.
    Povarov, G.N., Mathematical Theory of Designing the Contact (1, k)-terminal Networks, Dokl. Akad. Nauk SSSR, 1955, vol. 5.Google Scholar
  24. 24.
    Blokh, A.Sh., Canonical Method of Designing Contact Circuits, Avtom. Telemekh., 1961, no. 6, pp. 756–764.Google Scholar
  25. 25.
    Parkhomenko, P.P., Design of Relay Structures on Various Functionally Complete Systems of Logic Gates, Avtom. Telemekh., 1964, no. 6, pp. 963–979.Google Scholar
  26. 26.
    Gorovoi, V.R., Design of Relay Structures by Replacement of the Output Functions, Avtom. Telemekh., 1967, no. 1, pp. 112–121.Google Scholar
  27. 27.
    Gorbatov, V.A., Design of Logic Circuits in Arbitrary Basis, in Teoriya diskretnykh avtomatov (Theory of Discrete Automata), Riga: Zinatne, 1967.Google Scholar
  28. 28.
    Rudeanu, S., Boolean Functions and Equations, Amsterdam: North-Holland, 1974.Google Scholar
  29. 29.
    Zakrevskii, A.D., Logicheskie uravneniya (Logic Equations), Minsk: Nauka i Tekhnika, 1975.Google Scholar
  30. 30.
    Shannon, C.E., Collected Papers, Sloane, N.J.A. and Wyner, A.D., Eds., New York: IEEE Press, 1993.Google Scholar
  31. 31.
    Yablonskii, S.V., On Algorithmic Difficulties of Designing the Minimal Contact Circuits, in Probl. Kibern., 1959, no. 2, Moscow: Fizmatgiz, 1959, pp. 75–121.Google Scholar
  32. 32.
    Lupanov, O.B., O sinteze nekotorykh klassov upravlyayushchikh sistem (On Design of Some Classes of Control Systems), Moscow: Fizmatgiz, 1963, no. 10, pp. 63–97.Google Scholar
  33. 33.
    Vranesic, Z.C., Lee, E.S., and Smith, K.S., A Many-valued Algebra for Switching Systems, IEEE Trans. Comput., 1970, vol. C-19, pp. 964–971.Google Scholar
  34. 34.
    Malyugin, V.D., Realization of the Boolean Functions by Arithmetic Polynomials, Avtom. Telemekh., 1982, no. 4, pp. 84–93.Google Scholar
  35. 35.
    Lapkin, L.Ya., On the Vector Software Support of Logic Functions, Avtom. Telemekh., 1983, no. 3, pp. 120–128.Google Scholar
  36. 36.
    Vykhovanets, V.S. and Malyugin, V.D., Multiple Logical Computations, Avtom. Telemekh., 1998, no. 6, pp. 163–171.Google Scholar
  37. 37.
    Yablonskii, S.V., Functional Constructions in the k-valued Logic, Proc. Steklov Mat. Inst., 1958, vol. 51, pp. 5–142.zbMATHGoogle Scholar
  38. 38.
    Walliuzzaman, K.M. and Vranesic, Z.G., On Decomposition of Multiple-valued Switching Functions, Comput. J., 1970, vol. 13, pp. 359–362.MathSciNetGoogle Scholar
  39. 39.
    Su, Y.H. and Cheung, P.T., Computer Minimization of Multiple-valued Switching Function, IEEE Trans. Comput., 1972, vol. C21, pp. 995–1003.MathSciNetGoogle Scholar
  40. 40.
    Tokmen, V.H., Disjoint Decomposability of Multi-valued Functions by Spectral Means, Proc. IEEE 10th Int. Symp. Multiple Valued Logic, 1980, pp. 83–89.Google Scholar
  41. 41.
    Strazdins, I., The Polynomial Algebra of Multiple-valued Logic, Algebra, Combinat. Logic Comput. Sc., 1983, vol. 42, pp. 777–785.MathSciNetGoogle Scholar
  42. 42.
    Perkowski, M.A., The Generalized Orthonormal Expansion of Function with Multiple-valued Inputs and Some of Its Application, Proc. Int. Symp. Multi-Valued Logic, 1992, pp. 442–450.Google Scholar
  43. 43.
    Post, T.L., Introduction to a General Theory of Elementary Proposition, Am. J. Math., 1921, vol. 43, pp. 163–185.zbMATHMathSciNetGoogle Scholar
  44. 44.
    Webb, D.L., Generation of Any N-valued Logic by One Binary Operator, Proc. Nat. Acad. Sci., 1935, vol. 21, pp. 252–254.zbMATHGoogle Scholar
  45. 45.
    Bernstein, B., Operations with Respect to which the Elements of Boolean Algebra Form a Group, Trans. Am. Math. Soc., 1924, vol. 26, pp. 171–175.zbMATHGoogle Scholar
  46. 46.
    Cohn, M., Switching Functions Canonical Form over Integer Fields, PhD Dissertation, Cambridge: Harvard Univ., 1960.Google Scholar
  47. 47.
    Tosic, Z., Analytical Representation of an m-valued Logical Function over the Ring of Integers Modulo m, PhD Dissertation, Belgrade, 1972.Google Scholar
  48. 48.
    McCluskey, E.J., Logic Design of Multivalued IIL Logic Circuits, IEEE Trans. Comput., 1979, vol. C28, no. 8, pp. 564–569.MathSciNetGoogle Scholar
  49. 49.
    Zakrevskii, A.D., Algorithms to Decompose Boolean Functions, Tr. Sib. Fiz.-tekhn. Inst., 1964, vol. 44, pp. 5–16.Google Scholar
  50. 50.
    Vykhovanets, V.S., Spectral Methods in Logical Data Processing, Avtom. Telemekh., 2001, no. 10, pp. 28–53.Google Scholar
  51. 51.
    Lupanov, O.B., On One Method of Circuit Design, Izv. Vuzov, Radiofiz., 1958, no. 1, pp. 120–140.Google Scholar
  52. 52.
    Faradzhiev, R.G. and Tsypkin, Ya.Z., Laplace-Galois Transforms in the Theory of Sequential Machines, Dokl. Akad. Nauk SSSR, 1966, vol. 166, no. 36.Google Scholar
  53. 53.
    Rader, C.M., Discrete Convolution via Mersenne Transorm, IEEE Trans. Comput., 1972, vol. C-21, no. 12, pp. 1269–1273.MathSciNetGoogle Scholar
  54. 54.
    McClellan, J.H. and Rader, C.M., Number Theory in Digital Signal Processing, Englewood Cliffs: Prentice Hall, 1979. Translated under the title Primenenie teorii chisel v tsifrovoi obrabotke signalov, Moscow: Radio i Svyaz’, 1983.Google Scholar
  55. 55.
    Rademacher, H., Einige Sätze von allgemeinen Orthogonalfunktionen, Math. Ann., 1922, vol. 87, pp. 122–138.CrossRefMathSciNetGoogle Scholar
  56. 56.
    Walsh, J.L., A Closed Set of Orthogonal Functions, Am. J. Math., 1923, vol. 55, pp. 5–24.Google Scholar
  57. 57.
    Haar, A., Zur Theorie der orthogonalen Funktionensysteme, Math. Ann., 1910, vol. 69, pp. 331–371.CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Vilenkin, N.Ya., Class of Completely Orthogonal Systems, Izv. Akad. Nauk SSSR, Nat., 1947, no. 11, pp. 363–400.Google Scholar
  59. 59.
    Chrestenson, H.E., A Class of Generalized Walsh Functions, Pacific J. Math., 1955, vol. 5, pp. 17–31.zbMATHMathSciNetGoogle Scholar
  60. 60.
    Ahmed, N. and Rao, K.R., Orthogonal Transforms for Digital Signal Processing, Berlin: Springer, 1975. Translated under the title Ortogonal’nye preobrazovaniya pri obrabotke tsifrovykh signalov, Moscow: Svyaz’, 1980.Google Scholar
  61. 61.
    Vykhovanets, V.S., Polynomial Factorization of the Spectral Bases, Avtom. Telemekh., 2005, no. 12, pp. 5–18.Google Scholar
  62. 62.
    Vykhovanets, V.S. and Malyugin, V.D., Multiplicative Algebra and Its Application in the Data Processing Logic, Probl. Upravl., 2004, no. 3, pp. 89–95.Google Scholar
  63. 63.
    Artin, E., Geometricheskaya algebra (Geometrical Algebra), Moscow: Nauka, 1969.Google Scholar
  64. 64.
    Bronshtein, I.N. and Semendyaev, K.A., Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov (Mathematical Companion of Engineers and Undergraduate Students), Moscow: Nauka, 1980.Google Scholar
  65. 65.
    Kuz’min, V.A., Estimating Complexity of Realization of the Functions of Algebra of Logic by the Simplest Kinds of Binary Programs, in Metody diskretnogo analiza v teorii kodov i skhem (Methods of Discrete Analysis in the Theory of Codes and Circuits), Novosibirsk, 1976, no. 29, pp. 24–36.Google Scholar
  66. 66.
    Kuznetsov, O.P., On Software Support of the Logic Functions and Automata, Avtom. Telemekh., 1977, no. 7, pp. 163–174; no. 9, pp. 137–139.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. S. Vykhovanets
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations