Advertisement

Automation and Remote Control

, Volume 67, Issue 3, pp 345–349 | Cite as

Stability of linear time-delay systems

  • A. I. Barkin
Determinate Systems

Abstract

The sufficient condition of stability of linear system with delay in the form of frequency equality is received. Efficiency of the received criterion is shown on examples.

PACS number

02.30.Yy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rezvan, V., Absolyutnaya ustoichivost’ avtomaticheskikh sistem s zapazdyvaniem (Absolute Stability of Automatic Delay Systems), Moscow: Nauka, 1983.Google Scholar
  2. 2.
    Postnikov, M.M., Ustoichivye mnogochleny (Stable Polynomials), Moscow: Nauka, 1981.Google Scholar
  3. 3.
    Fu, M., Olbrot, A.W., and Polis, M.P., Robust Stability for Time-Delay Systems: The Edge Theorem and Graphical Tests, IEEE Trans. Automat. Control, 1989, vol. 34, no. 8, pp. 306–311.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Zhabko, A.P. and Kharitonov, V.L., Stability of a Family of Quasi-Polynomials, Avtomatika, 1992, no. 2, pp. 3–15.Google Scholar
  5. 5.
    Kharitonov, V.L., Robust Stability Analysis of Time Delay Systems: A Survey, Ann. Rev. Control, 1999, vol.23, pp. 185–196.Google Scholar
  6. 6.
    Rodionov, A.M., A Method for Investigating the Stability of Differential and Discrete Delay Equations, Avtom. Telemekh., 1996, no. 12, pp. 38–47.Google Scholar
  7. 7.
    Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with a Nonunique Equilibrium State), Moscow: Nauka, 1978.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. I. Barkin
    • 1
  1. 1.Institute for Systems AnalysisRussian Academy of SciencesMoscowRussia

Personalised recommendations