Levan from Azotobacter vinelandii as a Component of Biosorbents for Heavy Metals and Radionuclides

Abstract

Cultivation of Azotobacter vinelandii D-08 in media with molasses and distillery waste was shown to increase levansaccharase activity and levan biosynthesis. Levansaccharase also exhibited maximal activity when grown in a molasses medium, which correlated with the highest level of the polysaccharide synthesis. An additional fraction of high molecular weight levan (more than 1000 kDa) with a modified molecular structure (reduced contribution of double bond oscillations and decreased molecule hydration) was synthesized by bacteria, which resulted in a higher capacity for the binding of Na, Mg, S, Ca, and Fe in the cultivation medium. Cryogels based on polyvinyl alcohol and levan were capable of efficient maximal absorption of different ions at different times: copper (1 h), zinc (24 h), and cadmium (10 min), radioactive plutonium (4 h), and uranium (168 h). This suggests that they can be used as sorbents for wastewater treatment to eliminate heavy metals and radionuclides.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Humelnicu, D., Dinu, M.V., and Dragan, E.S., J. Hazard. Mater., 2011, vol. 185, no. 1, pp. 447–455.

    CAS  Article  Google Scholar 

  2. 2

    Zhang, F., Wang, M., Zhou, L., Ma, X., and Zhou, Y., Desalin. Water Treat., 2015, vol. 54, no. 9, pp. 2546–2556.

    CAS  Article  Google Scholar 

  3. 3

    Wang, X., Zheng, Y., and Wang, A., J. Hazard. Mater., 2009, vol. 168, nos. 2–3, pp. 970–977.

    CAS  Article  Google Scholar 

  4. 4

    Karim, M.R., Aijaz, M.O., Alharth, N.H., Alharbi, H.F., Al-Mubaddel, F.S., and Awual, M.R., Ecotoxicol. Environ. Saf., 2019, vol.169, pp. 479–486.

    CAS  Article  Google Scholar 

  5. 5

    Su, T. Wu, L., Pan, X., Zhang, C., Shi, M., Gao, R., Qi, X., and Dong, W., J. Colloid Interface Sci., 2019, vol. 542, pp. 253–262.

    CAS  Article  Google Scholar 

  6. 6

    Bajpai, A.K., Shukla, S.K., Bhanu, S., and Kankane, S., Progr. Polym. Sci., 2008, vol. 33, no. 11, pp. 1088–1118.

    CAS  Article  Google Scholar 

  7. 7

    Myung, D., Waters, D., Wiseman, M., Duhamel, P.E., Noolandi, J., Ta, C.N., and Frank, C.W., Polym. Adv. Technol., 2008, vol. 19, no. 6, pp. 647–657.

    CAS  Article  Google Scholar 

  8. 8

    Dragan, E.S., Chem. Eng. J., 2014, vol. 243, pp. 572–590.

    CAS  Article  Google Scholar 

  9. 9

    Bonina, P., Petrova, T.S., and Manolova, N., J. Bioact. Compat. Polym., 2004, vol. 19, no. 2, pp. 101–116.

    CAS  Article  Google Scholar 

  10. 10

    Liang, S., Liu, L., Huang, Q., and Yam, K.L., Carbohydr. Polym., 2009, vol. 77, no. 4, pp. 718–724.

    CAS  Article  Google Scholar 

  11. 11

    Liu, J., Wang, W., and Wang, A., Polym. Adv. Technol., 2011, vol. 22, no. 5, pp. 627–634.

    CAS  Article  Google Scholar 

  12. 12

    Marsano, E., Bianchi, E., Vicini, S., Compagnino, L., Sionkowska, A., Skopińska, J., and Wiśniewski, M., Polymer, 2005, vol. 46, no. 5, pp. 1595–1600.

    CAS  Article  Google Scholar 

  13. 13

    Huang, D., Wang, W., Kang, Y., and Wang, A., J. Macromol. Sci. Part A: Pure Appl. Chem., 2012, vol. 49, no. 11, pp. 971–979.

    CAS  Article  Google Scholar 

  14. 14

    Dragan, E.S. and Dinu, M.V., Res. J. Chem. Env., 2013, vol. 17, no. 10, pp. 4–10.

    Google Scholar 

  15. 15

    Wang, W.B., Huang, D.J., Kang, Y.R., and Wang, A.Q., Colloid Surf. B: Biointerfaces, 2013, vol. 106, pp. 51–59.

    CAS  Article  Google Scholar 

  16. 16

    Pena, C., Miranda, L., Segura, D., Nunez, C., Espin, G., and Galindo, E., J. Ind. Microbiol. Biotechnol., 2002, vol. 29, no. 5, pp. 209–213.

    CAS  Article  Google Scholar 

  17. 17

    Shutova, V.V. and Rusyaeva, A.B., Izv. Sarat. Univ., Nov. Ser., Ser.: Khim. Biol. Ekol., 2018, vol. 18, no. 4, pp. 455–461.

    Google Scholar 

  18. 18

    Revin V.V., Shutova V.V., Novokuptsev N.V., Fundam. Issled., 2016, no. 1–1, pp. 53–57.

  19. 19

    Revin V.V., Shutova V.V., Novokuptsev N.V., J. Biotechnol., 2016, vol. 231 (suppl.), p. S8.

    Article  Google Scholar 

  20. 20

    Abdel-Fattah, A.F., Mahmoud, D.A.R., and Esawy, M.A.T., Curr. Microbiol., 2005, vol. 51, no. 6, pp. 402–407.

    CAS  Article  Google Scholar 

  21. 21

    Kang, S.A., Jang, K.H., Seo, J.W., Kim, K.H., Kim, Y.H., Rairakhwada, D., Seo, M.Y., Lee, J.O., Ha, S.D., Kim, C.-H., and Rhee, S.K., Levan: Applications and Perspectives. Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives, Rehm, B.H.A., Ed., Norfolk, UK: Caister Academic Press, 2009, pp. 145–161.

    Google Scholar 

  22. 22

    Vijn, I. and Smeekens, S., Plant Physiol., 1999, vol. 120, no. 2, pp. 351–360.

    CAS  Article  Google Scholar 

  23. 23

    Revin, V.V., Kostina, E.G., Revina, N.V., and Shutova, V.V., Braz. Arch. Biol. Techn., 2018, vol. 61. e18160406.

    Article  Google Scholar 

  24. 24

    Bugaenko, I.F. and Shterman, S.V., Melassa (sveklovichnaya, trostnikovaya, syrtsovaya), sostav i metody analiza (Molasses (Beet, Cane, and Raw): Composition and Methods of Analysis), Moscow: Mosk. Gos. Univ., 2006.

  25. 25

    Distillers Grains: Production, Properties, and Utilization, Liu, K.S. and Rosentrater, K.A., Taylor and Francis Group, LLC, Boca Raton: CRC Press, 2012.

  26. 26

    Stepanov, N.A. and Efremenko, E.N., Catalysts, 2018, vol. 8, pp. 33–49.

    Article  Google Scholar 

  27. 27

    Ortiz-Soto M.E., Rivera M., Rudiño-Piñera E., Olvera C., López-Munguía A., Protein Eng. Des. Sel., 2008, vol. 21, no. 10, pp. 589–595.

    CAS  Article  Google Scholar 

  28. 28

    Kolomiets L.L., Pilipenko L.A., Zhmud’ I.M., Panfilova I.P., Zh. Anal. Khim., 1999, vol. 54, no. 1, pp. 34–36.

    Google Scholar 

  29. 29

    Kucukasik F., Kazak H., Guney D., Finore I., Poli A., Yenigun O., Nicolaus B., Oner E.T., Appl. Microbiol. Biotechnol. 2011, vol. 89, no. 6, pp. 1729–1740.

    Article  Google Scholar 

  30. 30

    Sarilmiser, H.K., Ates, O., Ozdemir, G., Arga, K.Y., and Oner, E.T., J. Biosci. Bioeng. 2015, vol. 119, no. 4, pp. 455–463.

    Article  Google Scholar 

  31. 31

    Khan, M. and Lo, I.M.C., Water Res., 2016, vol. 106, pp. 259–271.

    Article  Google Scholar 

  32. 32

    Öner, E.T., Hernández, L. and Combie, J., Biotechnol. Adv., 2016, vol. 34, no.5, pp. 827–844.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-05054).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Shutova.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Boutanaev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shutova, V.V., Revin, V.V., Kalinkina, E.A. et al. Levan from Azotobacter vinelandii as a Component of Biosorbents for Heavy Metals and Radionuclides. Appl Biochem Microbiol 57, 102–109 (2021). https://doi.org/10.1134/S0003683821010178

Download citation

Keywords:

  • levan
  • Azotobacter vinelandii D-08
  • absorption
  • copper ions
  • cobalt ions
  • radionuclides