The Improved Expression and Stability of Zearalenone Lactonohydrolase from Escherichia coli BL21 (DE3)

Abstract

Zearalenone (ZEN) is an estrogenic mycotoxin produced by Fusarium fungi which is commonly found in cereal crops. Because of its estrogen toxicity, ZEN can cause reproductive disorders and reduce immune function in human and animals. The zearalenone lactonohydrolase (ZHD 101) derived from Clonostachys rosea IFO 7063 can efficiently hydrolyze and detoxify ZEN. However, application of ZHD101 was always limited because of its instability and poor solubility. In this study, a codon-optimized DNA fragment for a recombinant dissolved ZHD101 (rdZHD) was designed and synthesized, and soluble rdZHD protein was successfully expressed and purified using Escherichia coli BL21 (DE3) expression system. HPLC results showed that 100 μg/mL ZEN could be thoroughly degraded by rdZHD within 6 h, and the ZEN degradation activity of rdZHD was calculated as 1150 U/mg. Furthermore, the purified rdZHD was immobilized with cross-linked poly(γ-glutamic acid)/gelatin hydrogel (CPE), and the activity and stability of immobilized rdZHD (CPE-rdZHD) was evaluated. The CPE-rdZHD showed better pH stability and thermostability than free rdZHD. The research could provide an effectively biological detoxification technology for ZEN degradation in agriculture and grain processing industry.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Zinedine, A., Soriano, J.M., Moltó, J.C., and Mañes, J., Food Chem. Toxicol., 2007, vol. 45, no. 1, pp. 1–18.

    CAS  Article  Google Scholar 

  2. 2

    Kakeya, H., Takahashi-Ando, N., Kimura M., Onose, R., Yamaguchi, I., and Osada, H., Biosci. Biotechnol. Biochem., 2002, vol. 66, no. 12, pp. 2723–2726.

    CAS  Article  Google Scholar 

  3. 3

    Minervini, F. and Dell’Aquila M.E., Int. J. Mol. Sci., 2008, vol. 9, no. 12, pp. 2570–2584.

    CAS  Article  Google Scholar 

  4. 4

    Gallo, A., Giuberti G., Frisvad, J.C., Bertuzzi, T., and Nielsen, K.F., Toxins (Basel), 2015, vol.7, no. 8, pp. 3057–3111.

    CAS  Article  Google Scholar 

  5. 5

    Chilaka, C.A., De Boevre, M., Atanda, O.O., and De Saeger, S., Toxins (Basel), 2017, vol. 9, no. 1, p. 19.

    Article  Google Scholar 

  6. 6

    Hassan, Y.I. and Zhou, T., Toxins (Basel), 2018, vol. 10, no. 3, p. 116.

    Article  Google Scholar 

  7. 7

    Shanakhat, H., Sorrentino, A., Raiola, A., Romano, A., Masi, P., and Cavella, S., J. Sci. Food Agric., 2018, vol. 98, no. 11, pp. 4003–4013.

    CAS  Article  Google Scholar 

  8. 8

    Awad, W.A., Ghareeb, K., Bohm, J., and Zentek, J., Food Addit. Contam. A, 2010, vol. 27, no. 4, pp. 510–520.

    CAS  Article  Google Scholar 

  9. 9

    Li, S.Y., Yu, Q.X., Xiang, L., Zhou, Y.L., and Zhang, G.M., Chin. J. Biotech., 2018, vol. 34, no. 4, pp. 489–500.

    Google Scholar 

  10. 10

    Zhu, Y., Hassan, Y.I., Lep,p D., Shao, S., and Zhou, T., Toxins (Basel), 2017, vol. 9, no. 4, p. 130.

    Article  Google Scholar 

  11. 11

    Takahashi-Ando, N., Kimura, M., Kakeya, H., Osada, H., and Yamaguchi, I., Biochem. J., 2002, vol. 365, no. 1, pp. 1–6.

    CAS  Article  Google Scholar 

  12. 12

    Xiang, L., Wang, Q.H., Zhou, Y.L., Yin, L.F., Zhang, G.M., and Ma, Y.H., Microbiol. Res., 2016, vol. 193, pp. 48–56.

    CAS  Article  Google Scholar 

  13. 13

    Sirisha, V.L., Jain, A., and Jain, A., Adv. Food Nutr. Res., 2016, vol. 79, pp. 179–211.

    CAS  Article  Google Scholar 

  14. 14

    He, M.L., Li, Y., Pi, F.W., Ji, J., He, X.X., Zhang, Y.Z., and Sun, X.L., Food Control, 2016, vol. 68, pp. 271–279.

    CAS  Article  Google Scholar 

  15. 15

    Chang, S.W., Shaw, J.F., Yang, K.H., Chang, S.F., and Shieh, C.J., Biores. Technol., 2008, vol. 99, no. 8, pp. 2800–2805.

    CAS  Article  Google Scholar 

  16. 16

    Xie, J., Zhang, H., Li, X., and Shi, Y., Biomacromolecules, 2014, vol. 15, no. 2, pp. 690–697.

    CAS  Article  Google Scholar 

  17. 17

    Yang, L.Q., Li, X.Y., Li, X., Su, Z.C., Zhang, C.G., Xu, M.K., and Zhan,g H.W., Biomacromolecules, 2015, vol. 287, pp. 287–295.

    CAS  Google Scholar 

  18. 18

    Lai, E.P., Wang, Y.X., Wei, Y., Li, G., and Ma, G.H., J. Appl. Polym. Sci., 2016, vol. 133, no. 21, pp. 1–9.

    Article  Google Scholar 

  19. 19

    Baneyx, F. and Mujacic, M., Nat. Biotechnol., 2004, vol. 22, no. 11, pp. 1399–1408.

    CAS  Article  Google Scholar 

  20. 20

    Phadtare, S. and Severinov, K., J. Bacteriol., 2005, vol. 187, no. 18, pp. 6584–6589.

    CAS  Article  Google Scholar 

  21. 21

    Gomez, C.G., Alvarez Igarzabal, C.I., and Strumia, M.C., Polymer, 2004,vol. 45, no. 18, pp. 6189–6194.

    CAS  Article  Google Scholar 

  22. 22

    Sheldon, R.A., Adv. Synth. Catal., 2007, vol. 349, no. 8–9, pp. 1289–1307.

    CAS  Article  Google Scholar 

  23. 23

    Keerti Gupta, A., Kumar, V., Dubey, A., and Verma, A.K., I.S.R.N. Biochem., 2014, vol. 2014, p. 178498.

    Google Scholar 

  24. 24

    Sahin, F., Demirel, G., and Tümtürk, H., Int. J. Biol. Macromol., 2005, vol. 37, no. 3, pp. 148–153.

    CAS  Article  Google Scholar 

  25. 25

    Bezbradica, D.I., Mateo, C., and Guisan, J.M., J. Mol. Catal. B: Enzym., 2014, vol.102, pp. 218–224.

    CAS  Article  Google Scholar 

  26. 26

    Wang, N., Wu, R.N., Jiang, S.W., Hart, D.J., Gao, H.R., Li, X.T., Lian, X.L., and An, Y.F., Chem. Eng. Technol., 2018, vol. 41, pp. 1949–1955.

    CAS  Article  Google Scholar 

  27. 27

    Huang, X.J., Ge, D., and Xu, Z.K., Eur. Polym., 2007, vol. 43, no. 9, pp. 3710–3718.

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported by National Key Research and Development Program of China (2017YFD0800705), National Natural Science Foundation of China (41877503), Liaoning Revitalization Talents Program (XLYC1807226), and Shenyang High-level Innovative Talents Program (RC190060).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to X. Fu or M. Xu.

Ethics declarations

The authors declare no financial or commercial conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Xu, M., Li, T. et al. The Improved Expression and Stability of Zearalenone Lactonohydrolase from Escherichia coli BL21 (DE3). Appl Biochem Microbiol 57, 79–85 (2021). https://doi.org/10.1134/S0003683821010075

Download citation

Keywords:

  • zearalenone
  • immobilization
  • codon optimization
  • protein expression