Effect of Structural Features of Pectin on Its Complexation with Lysozyme


The interaction between lysozyme (Lys) and pectins with different net and local charges and with block (BD) and random (RD) distributions of methoxyl groups is studied via dynamic light scattering, turbidimetry, high-resolution optical microscopy, and electrophoretic mobility measurements. RD 16.2, RD 38.2, BD 16.9, and BD 33.1 form water-soluble complexes at pH 5.1, ionic strength I = 0.01, and q < qmах, within the range of mixture compositions q spanning ≅ 7 × 10–4 to 3.0 × 10–3, where q is the weight ratio between pectin and Lys; while water-insoluble complexes are formed for q > 3 × 10–3. The corresponding parameters for RD 66.5 and BD 68.2 are higher: q ≅ 3 × 10–3 up to q ≅ 0.01, and q higher than 0.01. Optical microscopy shows that the complexes between Lys and BDs are large (15–20 μm) for all studied values of the degree of methoxylation (DM), while the average size of RD-based complexes is substantially lower (from 0.6 to 3 μm) and depends on the DM. The BD-based complexes have a gel-like morphology irrespective of the DM, whereas particles of RD-based complex have the form of both coacervate drops and gel-like particles, depending on the DM. The threshold value for ionic strength Iset above which Lys does not form complexes with RD and BD is found to be 0.11. That being so, the values for Iset and pHset for the BD/Lys systems are independent of the pectin DM, while for the RD/Lys systems these parameters diminish considerably with an increase in the DM. The dependence of complexation of Lys and pectin on I has a non-monotonic character with a maximum at I = 0.03 and 0.06 for RD and BD, respectively. Our understanding of the effect that the total charge of a pectin molecule and its distribution along the chain has on the complexation of pectin and a protein is important for our ability to predict the stability of the food product structure.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    May, C.D., Carbohydr. Res., 1990, vol. 12, no. 1, pp. 79–99.

    CAS  Article  Google Scholar 

  2. 2

    Serov, A.V., Antonov, Y.A., and Tolstoguzov, V.B., Die Nahrung, 1985, vol. 29, no. 1, pp. 19–30.

    CAS  Article  Google Scholar 

  3. 3

    Tolstoguzov, V.B., in Functional Properties of Food Macromolecules, Mitchell, J.R. and Ledward, D.A., Eds., New York: Elsevier, 1986, pp. 385–415.

    Google Scholar 

  4. 4

    Tolstoguzov, V.B., Food Hydrocolloids, 1991, vol. 4, no. 6, pp. 429–468.

    CAS  Article  Google Scholar 

  5. 5

    Antonov, Y.A., Grinberg, W.Y., and Tolstoguzov, V.B., Die Starke, 1975, vol. 27, no. 12, pp. 424–431.

    CAS  Article  Google Scholar 

  6. 6

    Antonov, Y.A., Lozinskaya, N.V., Grinberg, V.Y., Dianova, V.T., and Tolstoguzov, V.B., Colloid Polym. Sci., 1979, vol. 257, no. 11, pp. 1159–1171.

    CAS  Article  Google Scholar 

  7. 7

    Antonov, Y.A., Grinberg, V.Y., Zhuravskaya, N.A., and Tolstoguzov, V.B., Carbohydr. Res., 1982, vol. 2, no. 1, pp. 81–90.

    CAS  Article  Google Scholar 

  8. 8

    Antonov, Y.A. and Kiknadze, E.V., Die Nahrung, 1987, vol. 31, no. 1, pp. 57–61.

    CAS  Article  Google Scholar 

  9. 9

    Antonov, Y.A., Lashko, N.P., Glotova, Y.K., Malovikova, A., and Markovich, O., Food Hydrocoll., 1996, vol. 10, no. 1, pp. 1–9.

    CAS  Article  Google Scholar 

  10. 10

    Antonov, Y.A. and Soshinskya, A., Int. J. Biol. Macromol., 2000, vol. 27, no. 4, pp. 279–285.

    CAS  Article  Google Scholar 

  11. 11

    Girard, M., Turgeon, S.L., and Gauthier, S.F., J. Agric. Food Chem., 2003, vol. 51, no. 20, pp. 6043–6049.

    CAS  Article  Google Scholar 

  12. 12

    Gummel, J., Boué, F., Demé, B., and Cousin, F., J. Phys. Chem. B., 2006, vol. 110, no. 49, pp. 24837–24846.

    CAS  Article  Google Scholar 

  13. 13

    Girard, M., Sanchez, C., Laneuville, S.I., Turgeon, S.L., and Gauthier, S.F., Colloids Surface B: Biointerfaces, 2004, vol. 35, no. 1, pp. 15–22.

    CAS  Article  Google Scholar 

  14. 14

    Gilsenan, P.M., Richardson, R.K., and Morris, E.R., Food Hydrocoll., 2003, vol. 17, no. 6, pp. 723–737.

    CAS  Article  Google Scholar 

  15. 15

    Maroziene, A. and De Kruif, C.G., Food Hydrocoll., 2000, vol. 14, no. 4, pp. 391–394.

    CAS  Article  Google Scholar 

  16. 16

    Carlsson, F., Lines, P., and Malmsten, M., J. Phys. Chem. B, 2001, vol. 105, no. 38, pp. 9040–9049.

    CAS  Article  Google Scholar 

  17. 17

    van de Weert, M., Andersen, M.B., and Frokjaer, S., Pharm. Res., vol. 21, no. 12, pp. 2354–2359.

  18. 18

    Celus, M., Kyomugasho, C., Kermani, Z.J., Roggen, K., Van Loey, A.M., Grauwet, T., and Hendrickx, M.E., Food Hydrocoll., 2017, vol. 73, no. 1, pp. 101–109.

    CAS  Article  Google Scholar 

  19. 19

    Aune, K.C. and Tanford, C., Biochemistry, 1969, vol. 8, no. 11, pp. 4579–4585.

    CAS  Article  Google Scholar 

  20. 20

    Kuehner, D.E., Engmann, J., Fergg, F., Wernick, M., Blanch, H.W., and Prausnitz, M., J. Phys. Chem. B, 1999, vol. 103, no. 8, pp. 1368–1374.

    CAS  Article  Google Scholar 

  21. 21

    Ngouemazong, D.E., Tengweh, F.E., Duvetter, T., Fraeye, I., Van Loey, A., Moldenaers, P., and Hendrickx, M., Food Hydrocoll., 2011, vol. 25, no. 4, pp. 434–443.

    CAS  Article  Google Scholar 

  22. 22

    Kohn, R., Carbohydr. Res., 1987, vol. 160, no. 4, pp. 343–353.

    CAS  Article  Google Scholar 

  23. 23

    Levis, J.C., Snell, N.S., Hirschmann, D.J., and Fraenkel-Konrat, H., J. Biol. Chem., 1950, vol. 186, no. 1, pp. 23–36.

    Article  Google Scholar 

  24. 24

    Antonov, Yu.A. and Zhuravleva, I.L., Appl. Biochem. Microbiol., 2019, vol. 55, no. 3, pp. 209–217.

    CAS  Article  Google Scholar 

  25. 25

    Parmar, A.S. and Muschol, M., Biophys. J., 2009, vol. 97, no. 2, pp. 590–598.

    CAS  Article  Google Scholar 

  26. 26

    Strȍm, A., Schuster, E., and Menggoh, S., Carbohydr. Res., 2014, vol. 113, no. 3, pp. 336–343.

    Article  Google Scholar 

  27. 27

    De Kruif, C.G. and Tuinier, R., Food Hydrocoll., 2001, vol. 15, no. 4, pp. 555–563.

    CAS  Article  Google Scholar 

  28. 28

    Bharti, B., Adsorption, Aggregation and Structure Formation in Systems of Charged Particles: from Colloidal to Supracolloidal Assembly, Heidelberg: Springer, 2014.

    Google Scholar 

  29. 29

    Seyrek, E., Dubin, P.L., Tribet, C., and Gamble, E.A., Biomacromolecules, 2003, vol. 4, no. 2, pp. 273–282.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yu. A. Antonov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonov, Y.A., Zhuravleva, I.L. Effect of Structural Features of Pectin on Its Complexation with Lysozyme. Appl Biochem Microbiol 57, 31–39 (2021). https://doi.org/10.1134/S0003683821010026

Download citation


  • pectin
  • lysozyme
  • complexation
  • total charge
  • local charge
  • structure