Transcriptome Analysis of Signaling Pathways in Caco-2 Cells Involved in the Formation of Intestinal Villi


Caco-2 cells are traditionally used to construct in vitro models of the intestinal barrier. One characteristic of the mature intestine is the presence of villi—connective tissue outgrowths covered with epithelial cells. It was recently shown that Caco-2 cells form structures resembling intestinal villi during prolonged cultivation. In this work, we showed via transcriptome analysis that the BMP and PDGF signaling cascades involved in the formation of villi in vivo are significantly altered during the differentiation of Caco-2 cells and, therefore, can participate in the formation of similar structures in vitro. In particular, we found a significant decrease in the expression of the BMP4, BMP7, and BMP8A genes in differentiated cells as compared to undifferentiated cells. We also first discovered periodic fluctuations in transepithelial resistance upon the differentiation of Caco-2 cells. The period of observed fluctuations indicates that they can occur as a result of cell proliferation during villus formation.

This is a preview of subscription content, access via your institution.

Fig. 1.


  1. 1

    Shah, P., Jogani, V., Bagchi, T., and Misra, A., Role of Caco-2 cell monolayers in prediction of intestinal drug absorption, Biotechnol. Prog., 2006, vol. 22, pp. 186–198.

    CAS  Article  Google Scholar 

  2. 2

    Hidalgo, I.J., Raub, T.J., and Borchardt, R.T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology, 1989, vol. 96, pp. 736–749.

    CAS  Article  Google Scholar 

  3. 3

    Hubatsch, I., Ragnarsson, E.G.E., and Artursson, P., Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers, Nat. Protoc., 2007, vol. 2, pp. 2111–2119.

    CAS  Article  Google Scholar 

  4. 4

    Srinivasan, B., Kolli, A.R., Esch, M.B., et al., TEER measurement techniques for in vitro barrier model systems, J. Lab. Autom., 2015, vol. 20, pp. 107–126.

    CAS  Article  Google Scholar 

  5. 5

    Nikulin, S.V., Gerasimenko, T.N., Shilin, S.A., et al., Application of impedance spectroscopy for the control of the integrity of in vitro models of barrier tissues, Bull. Exp. Biol. Med., 2019, vol. 166, pp. 512–516.

    CAS  Article  Google Scholar 

  6. 6

    Shyer, A.E., Tallinen, T., Nerurkar, N.L., et al., Villification: how the gut gets its villi, Science, 2013, vol. 342, pp. 212–218.

    CAS  Article  Google Scholar 

  7. 7

    van der Helm, M.W., Henry, O.Y.F., Bein, A., et al., Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy, Lab. Chip, 2019, vol. 19, pp. 452–463.

    CAS  Article  Google Scholar 

  8. 8

    Nikulin, S.V., Knyazev, E.N., Poloznikov, A.A., et al., Expression of SLC30A10 and SLC23A3 transporter mRNAs in Caco-2 cells correlates with an increase in the area of the apical membrane, Mol. Biol., 2018, vol. 52, pp. 577–582.

    CAS  Article  Google Scholar 

  9. 9

    Walton, K.D., Freddo, A.M., Wang, S., and Gumucio, D.L., Generation of intestinal surface: an absorbing tale, Development, 2016, vol. 143, pp. 2261–2272.

    CAS  Article  Google Scholar 

  10. 10

    Chin, A.M., Hill, D.R., Aurora, M., and Spence, J.R., Morphogenesis and maturation of the embryonic and postnatal intestine, Semin. Cell Dev. Biol., 2017, vol. 66, pp. 81–93.

    Article  Google Scholar 

  11. 11

    Nikulin, S.V., Knyazev, E.N., Gerasimenko, T.N., et al., Impedance spectroscopy and transcriptome analysis of choriocarcinoma BeWo b30 as a model of human placenta, Mol. Biol., 2019, vol. 53, pp. 411–418.

    CAS  Article  Google Scholar 

  12. 12

    Nikulin, S.V., Knyazev, E.N., Gerasimenko, T.N., et al., Non-invasive evaluation of extracellular matrix formation in the intestinal epithelium, Bull. Exp. Biol. Med., 2018, vol. 166, pp. 35–38.

    CAS  Article  Google Scholar 

  13. 13

    Samatov, T.R., Senyavina, N.V., Galatenko, V.V., et al., Tumour-like druggable gene expression pattern of CaCo2 cells in microfluidic chip, BioChip J., 2016, vol. 10, pp. 215–220.

    CAS  Article  Google Scholar 

  14. 14

    Semenova, O.V, Petrov, V.A., Gerasimenko, T.N., et al., Effect of circulation parameters on functional status of heparg spheroids cultured in microbioreactor, Bull. Exp. Biol. Med., 2016, vol. 161, pp. 425–429.

    CAS  Article  Google Scholar 

  15. 15

    Henry, O.Y.F., Villenave, R., Cronce, M.J., et al., Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function, Lab. Chip, 2017, vol. 17, pp. 2264–2271.

    CAS  Article  Google Scholar 

  16. 16

    Izumo, M., Johnson, C.H., and Yamazaki, S., Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: Temperature compensation and damping, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 16089–16094.

    CAS  Article  Google Scholar 

  17. 17

    Izumo, M., Sato, T.R., Straume, M., and Johnson, C.H., Quantitative analyses of circadian gene expression in mammalian cell cultures, PLoS Comput. Biol., 2006, vol. 2, p. e136.

    Article  Google Scholar 

  18. 18

    Brown, S.A., Fleury-Olela, F., Nagoshi, E., et al., The period length of fibroblast circadian gene expression varies widely among human individuals, PLoS Biol., 2005, vol. 3, p. e338.

    Article  Google Scholar 

  19. 19

    Bairoch, A., The Cellosaurus, a cell-line knowledge resource, J. Biomol. Tech., 2018, vol. 29, pp. 25–38.

    Article  Google Scholar 

Download references


The study was funded by the Russian Science Foundation (project no.16-19-10597).

Author information



Corresponding author

Correspondence to S. V. Nikulin.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: BMP—bone morphogenetic protein; FBS—fetal bovine serum; PDGF—platelet derived growth factor; R—Pearson’s correlation coefficient; TEER—transepithelial/transendothelial resistance.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikulin, S.V., Raigorodskaya, M.P. & Sakharov, D.A. Transcriptome Analysis of Signaling Pathways in Caco-2 Cells Involved in the Formation of Intestinal Villi. Appl Biochem Microbiol 56, 898–901 (2020).

Download citation


  • impedance spectroscopy
  • intestine
  • villi
  • TEER
  • BMP
  • PDGF