Assessment of the Biotechnological Potential of Cyanobacterial and Microalgal Strains from IPPAS Culture Collection

Abstract

A search for strains capable of the simultaneous production of high amounts of several biologically valuable compounds and/or high biomass productivity has been carried out. The growth characteristics and biochemical composition of 12 microalgal and cyanobacterial strains from the IPPAS Collection were studied at the exponential and stationary growth phases. All of the strains had high growth rates (a doubling time of 6–22 h). The strains Cyanobacterium sp. IPPAS B-1200, Chlorella sp. IPPAS C-1210, Nannochloris sp. IPPAS C-1509, Cyanidium caldarium IPPAS P-510, and Vischeria sp. IPPAS H-242 demonstrated the highest biotechnological potential and can be used for the production of various types of biofuel, pigments, and feed and food additives, including those with a high content of eicosapentaenoic acid (20 : 5 Δ5, 8,11, 14, 17).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Falkowski, P.G. and Raven, J.A., Aquatic Photosynthesis, 2nd ed., Princeton, New Jersey: Princeton Univ. Press, 2007.

    Google Scholar 

  2. 2

    Chisti, Y., Constraints to commercialization of algal fuels, J. Biotechnol., 2013, no. 3, p. 201.

  3. 3

    Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A., Commercial applications of microalgae, J. Biosci. Bioeng., 2006, no. 2, pp. 87–96. https://doi.org/10.1263/jbb.101.87

  4. 4

    Becker, W., Microalgae in human and animal nutrition, in Handbook of Microalgal Culture, Richmond, A., Ed., Blackwell: Oxford, 2004, pp. 312–351.

    Google Scholar 

  5. 5

    Hudek, K., Davis, L.C., Ibbini, J., and Erickson, L., Commercial products from algae, in Algal Biorefneries, Bajpai, R., Prokop, A., and Zappi, M., Eds., Springer: Dordrecht, 2014, pp. 275‒296.

    Google Scholar 

  6. 6

    Pacheco, M.M., Hoeltz, M., Moraes, M.S.A., and Schneider, R.C.S., Microalgae: cultivation techniques and wastewater phycoremediation, J. Environ. Sci. Health A, 2015, vol. 50, no. 6, pp. 585–601. https://doi.org/10.1080/10934529.2015.994951

    CAS  Article  Google Scholar 

  7. 7

    Solovchenko, A.E., Semenova, L.R., Selyakh, I.O., et al., Assessment of a new Chlorella vulgaris (Chlorophyta) IPPAS C-2015 strain for application in poultry wastewater bioremediation, Biotekhnologia, 2016, vol. 32, no. 2, pp. 72‒81. https://doi.org/10.21519/0234-2758-2016-2-72-81

    Article  Google Scholar 

  8. 8

    Guiry, M.D., How many species of algae are there?, J. Phycol., 2012, vol. 48, pp. 1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x

    Article  PubMed  Google Scholar 

  9. 9

    Levine, I.A., Algae: a way of life and health, in Microalgae in Health and Disease Prevention, Levine, I.A. and Fleurence, J., Eds., Academic Press, 2018, pp. 1–10. https://doi.org/10.1016/B978-0-12-811405-6.00001-3

    Google Scholar 

  10. 10

    Gifuni, I., Pollio, A., Safi, C., et al., Current bottlenecks and challenges of the microalgal biorefinery, Trends Biotechnol., 2019, vol. 37, no. 3, pp. 242–252. https://doi.org/10.1016/j.tibtech.2018.09.006

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Petkov, G., Ivanova, A., Iliev, I., and Vaseva, I., A critical look at the microalgae biodiesel, Eur. J. Lipid Sci. Technol., 2012, vol. 114, pp. 103–111. https://doi.org/10.1002/ejlt.201100234

    CAS  Article  Google Scholar 

  12. 12

    Deprá, M.C., Santos, A.M., Severo, I.A., et al., Microalgal biorefineries for bioenergy production: can we move from concept to industrial reality?, BioEnergy Res., 2018, vol. 11, no. 4, pp. 727–747. https://doi.org/10.1007/s12155-018-9934-z

    CAS  Article  Google Scholar 

  13. 13

    Bastiaens, L., Van Roy, S., Thomassen, G., and Elst, K., Biorefinery of algae: technical and economic considerations, in Microalgae-Based Biofuels and Bioproducts, Gonzalez-Fernandez, C. and Muñoz, R., Eds., Woodhead Publishing, 2017, pp. 327–345. https://doi.org/10.1016/B978-0-08-101023-5.00014-5

    Google Scholar 

  14. 14

    Khozin-Goldberg, I. and Cohen, Z., Unraveling algal lipid metabolism: recent advances in gene identification, Biochimie, 2011, vol. no. 1, pp. 91–100. https://doi.org/10.1016/j.biochi.2010.07.020

  15. 15

    D'Alessandro, E.B. and Antoniosi Filho, N.R., Concepts and studies on lipid and pigments of microalgae: a review, Renew. Sust. Energ. Rev., 2016, vol. 58, pp. 832–841. https://doi.org/10.1016/j.rser.2015.12.162

    CAS  Article  Google Scholar 

  16. 16

    Heydarizadeh, P., Poirier, I., Loizeau, D., et al., Plastids of marine phytoplankton produce bioactive pigments and lipids, Mar. Drugs, 2013, vol. 11, no. 9, pp. 3425–3471. https://doi.org/10.3390/md11093425

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Gacheva, G.V. and Gigova, L.G., Biological activity of microalgae can be enhanced by manipulating the cultivation temperature and irradiance, Centr. Eur. J. Biol., 2014, vol. 9, no. 12, pp. 1168–1181. https://doi.org/10.2478/s11535-014-0350-x

    CAS  Article  Google Scholar 

  18. 18

    Abdullaev, A.A. and Semenenko, V.E., The intense culture of Dunaliella salina Teod. and its physiological characteristics, Fiziol. Rast., 1974, vol. 21, no. 6, pp. 1145–1153.

    CAS  Google Scholar 

  19. 19

    Sarsekeyeva, F.K., Usserbaeva, A.A., Zayadan, B.K., et al., Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition, Adv. Microbiol., 2014, vol. 4, no. 15, pp. 1033–1043. https://doi.org/10.4236/aim.2014.415114

    Article  Google Scholar 

  20. 20

    Hase, E., Morimura, Y., and Tamiya, H., Some data on the growth physiology of Chlorella studied by the technique of synchronous culture, Arch. Biochem. Biophys., 1957, vol. 69, pp. 149–165. https://doi.org/10.1016/0003-9861(57)90482-4

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Stanier, R.Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G., Purification and properties of unicellular blue-green algae (order Chroococcales), Bacteriol. Rev., 1971, vol. 35, pp. 171–205.

    CAS  Article  Google Scholar 

  22. 22

    Vladimirova, M.G., Bartsevich, E.D., Zholdakov, I.A., et al., IPPAS— Collection of Microalgae of Timiryazev Institute of Plant Physiology, Acad. Sci. USSR, in Katalog kul’tur mikrovodoroslei v kollektsiyakh SSSR (Catalogue of Microalgal Cultures in the Collections of USSR), Semenenko, V.E., Ed., Moscow: Ross. Akad. Nauk, 1991, pp. 8–61.

  23. 23

    Zavřel, T., Sinetova, M.A., and Červený, J., Measurement of chlorophyll a and carotenoids concentration in cyanobacteria, Bioprotocol, 2015, vol. 5, no. 9, e1467. https://doi.org/10.21769/BioProtoc.1467

    Article  Google Scholar 

  24. 24

    Wellburn, A.R., The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, J. Plant Physiol., 1994, vol. 144, no. 3, pp. 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

    CAS  Article  Google Scholar 

  25. 25

    Ritchie, R.J., Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents, Photosynth. Res., 2006, vol. 89, no. 1, pp. 27‒41. https://doi.org/10.1007/s11120-006-9065-9

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Zavrel, T., Očenášová, P., Sinetova, M.A., and Červený, J., Determination of storage (starch/glycogen) and total saccharides content in algae and cyanobacteria by a phenol-sulfuric acid method, Bioprotocol, 2018, vol. 8, no. 15, e2966. https://doi.org/10.21769/BioProtoc.2966

    CAS  Article  Google Scholar 

  27. 27

    Rumin, J., Bonnefond, H., Saint-Jean, B., et al., The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae, Biotechnol. Biofuels, 2015, vol. 8, p. 42. https://doi.org/10.1186/s13068-015-0220-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Fogg, G.E. and Thake, B., Algal Cultures and Phytoplankton Ecology, London: University of Wisconsin Press, 1987.

    Google Scholar 

  29. 29

    Tsoglin, L.N. and Pronina, N.A., Biotekhnologiya mikrovodoroslei (Biotechnology of Microalgae), Moscow: Nauchnyi Mir, 2012.

  30. 30

    Ogbonna, J.C., Yada, H., and Tanaka, H., Kinetic study on light-limited batch cultivation of photosynthetic cells, J. Ferm. Bioeng., 1995, vol. 80, no. 3, pp. 259–264. https://doi.org/10.1016/0922-338X(95)90826-L

    CAS  Article  Google Scholar 

  31. 31

    Sinetova, M.A., Cerveny, J., Zavrel, T., and Nedbal, L., On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142, J. Biotechnol., 2012, vol. 162, no. 1, pp. 148‒155.

    CAS  Article  Google Scholar 

  32. 32

    Graziani, G., Schiavo, S., Nicolai, M.A., et al., Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria,Food Funct., 2013, vol. 4, no. 1, pp. 144–152. https://doi.org/10.1039/C2FO30198A

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Gao, B., Yang, J., Lei, X., et al., Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies, J. Appl. Phycol., 2016, vol. 28, pp. 821–830. https://doi.org/10.1007/s10811-015-0626-1

    CAS  Article  Google Scholar 

  34. 34

    Rampen, S.W., Datema, M., Rodrigo-Gámiz, M., Schouten, S., et al., Sources and proxy potential of long chain alkyl diols in lacustrine environments, Geochem. Cosmochem. Acta, 2014, vol. 144, pp. 59–71. https://doi.org/10.1016/j.gca.2014.08.033

    CAS  Article  Google Scholar 

  35. 35

    Slocombe, S.P., Zhang, Q., Ross, M., et al., Unlocking nature’s treasure-chest: screening for oleaginous algae, Sci. Rep., 2015, vol. 5, p. 9844. https://doi.org/10.1038/srep09844

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Chisti, Y., Biodiesel from microalgae, Biotechnol. Adv., 2007, vol. 25, pp. 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Yu, J., Liberton, M., Cliften, P.F., et al., Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2, Sci. Rep., 2015, vol. 5, p. 8132. https://doi.org/10.1038/srep08132

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Weissman, J.C., Likhogrud, M., and Thomas, D.C., High-light selection produces a fast-growing Picochlorum celery,Algal Res., 2018, vol. 36, pp. 17–28. https://doi.org/10.1016/j.algal.2018.09.024

    Article  Google Scholar 

  39. 39

    Tumolo, T. and Lanfer-Marquez, U.M., Copper chlorophyllin: A food colorant with bioactive properties?, Food Res. Int., 2012, vol. 46, no. 2, pp. 451–459. https://doi.org/10.1016/j.foodres.2011.10.031

    CAS  Article  Google Scholar 

  40. 40

    Young, R.W. and Beregi, J.S., Use of chlorophyllin in the care of geriatric patients, J. Am. Geriatr. Soc., 1980, vol. 28, no. 1, pp. 46–47. https://doi.org/10.1111/j.1532-5415.1980.tb00124.x

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Sorensen, L., Hantke, A., and Eriksen, N.T., Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria,J. Sci. Food Agricult., 2013, vol. 93, no. 12, pp. 2933–2938. https://doi.org/10.1002/jsfa.6116

    CAS  Article  Google Scholar 

  42. 42

    Piorreck, M., Baasch, K.-H., and Pohl, P., Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes, Phytochemistry, 1984, vol. 23, no. 2, pp. 207–216. https://doi.org/10.1016/S0031-9422(00)80304-0

    CAS  Article  Google Scholar 

  43. 43

    Gonzalez, Lopez, C.V. and Garcia, M., d.C.C., Fernandez F.G.A., et al. Protein measurements of microalgal and cyanobacterial biomass, Biores. Techn., 2010, vol. 101, no. 19, pp. 7587–7591. https://doi.org/10.1016/j.biortech.2010.04.077

  44. 44

    Stepanchenko, N.S., Novikova, G.V., and Moshkov, I.E., Protein quantification, Russ. J. Plant Physiol., 2011, vol. 58, no. 4, pp. 737–742. https://doi.org/10.1134/S1021443711040182

    CAS  Article  Google Scholar 

  45. 45

    Halim, R., Danquah, M.K., and Webley, P.A., Extraction of oil from microalgae for biodiesel production: a review, Biotechnol. Adv., 2012, vol. 30, no. 3, pp. 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Suzuki, E. and Suzuki, R., Variation of storage polysaccharides in phototrophic microorganisms, J. Appl. Glycosci., 2013, vol. 60, no. 1, pp. 21‒27. https://doi.org/10.5458/jag.jag.JAG-2012_016

    CAS  Article  Google Scholar 

  47. 47

    Zhang, J., Wan, L., Xia, S., Li, A., et al., Morphological and spectrometric analyses of lipids accumulation in a novel oleaginous microalga, Eustigmatos cf. polyphem (Eustigmatophyceae), Bioprocess Biosyst. Eng., 2013, vol. 36, no. 8, pp. 1125–1130. https://doi.org/10.1007/s00449-012-0866-2

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Evstigneeva, R.P., Serebryannikova, G.A., Zvonkova, E.N., et al., Khimiya biologicheski aktivnykh prirodnykh soedinenii (Chemistry of Biologicaly Active Natural Compounds), Moscow: Khimiya, 1976.

  49. 49

    John, R.P., Anisha, G.S., Nampoothiri, K.M., and Pandey, A., Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol., 2011, vol. 102, no. 1, pp. 186–193. https://doi.org/10.1016/j.biortech.2010.06.139

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Ho, S.H., Huang, S.W., Chen, C.Y., Hasunuma, T., et al., Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresour. Technol., 2013, vol. 135, pp. 191–198. https://doi.org/10.1016/j.biortech.2012.10.015

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Sarsekeyeva, F., Zayadan, B., Usserbaeva, A., Bedbenov, V., et al., Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynth. Res., 2015, pp. 1‒12. https://doi.org/10.1007/s11120-015-0103-3

  52. 52

    Guschina, I.A. and Harwood, J.L., Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 2006, vol. 45, no. 2, pp. 160–186. https://doi.org/10.1016/j.plipres.2006.01.001

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Dunstan, G.A., Volkman, J.K., Barrett, S.M., and Garland, C.D., Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture, J. Appl. Phycol., 1993, vol. 5, no. 1, pp. 71‒83.

    CAS  Article  Google Scholar 

  54. 54

    Lenihan-Geels, G., Bishop, K., and Ferguson, L., Alternative sources of omega-3 fats: can we find a sustainable substitute for fish?, Nutrients, 2013, vol. 5, no. 4, p. 1301. https://doi.org/10.3390/nu5041301

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation (no. 14-14-00904).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Sinetova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or humans performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: ARA—arachidonic acid; Car—content of total carotenoids; dw—dry weight; Chl a(b)—chlorophyll a(b) content; EPA—eicosapentaenoic acid; EPS—exopolysaccharide(s); FA—fatty acid; FAME—fatty acid methyl ester; FFA—free fatty acid; OD750—optical density at a wavelength of 750 nm; Pf—final productivity; PUFA—polyunsaturated fatty acid; SDS—sodium dodecyl sulfate; Td—biomass doubling time; TAG—triacylglycerol; TLs—total lipids; UI—unsaturation index; μ—specific growth rate; μmax—maximal specific growth rate at the exponential growth phase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinetova, M.A., Sidorov, R.A., Starikov, A.Y. et al. Assessment of the Biotechnological Potential of Cyanobacterial and Microalgal Strains from IPPAS Culture Collection. Appl Biochem Microbiol 56, 794–808 (2020). https://doi.org/10.1134/S0003683820070030

Download citation

Keywords:

  • microalgae
  • cyanobacteria
  • biochemical composition
  • fatty acids
  • valuable metabolites
  • growth characteristics