Skip to main content
Log in

Development of Enzyme-Linked Immunosorbent Assay with Tiramine Amplification for the Detection of Potato Virus X

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A method is proposed for reducing the detection limit of enzyme-linked immunosorbent assay (ELISA) of potato virus X, based on the multiple introduction of tyramine into immune complexes and the subsequent detection of an enzyme label. During ELISA, a step by step formation of sandwich complex containing immobilized antibodies – potato virus X – horseradish peroxidase conjugate with antibodies to the virus was carried out. Peroxidase catalyzed the multiple insertion of a tyramine-biotin label into protein molecules, providing signal amplification upon the addition of the streptavidin-polyperoxidase conjugate. The conditions of the assay that ensure a high degree of amplification and a minimum background signal were established. The use of tyramine amplification made it possible to lower the detection limit by more than 30 times (from 100 to 3 ng/ml) when assayed in the buffer and extracts of potato leaves, slightly increasing its duration. Tyramine amplification is based on the use of universal reagents and can be used to reduce the detection limit of ELISA for other antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Tighe, P.J., Ryder, R.R., Todd, I., and Fairclough, L.C., Proteomics Clin. Appl., 2015, vol. 9, nos. 3-4, pp. 406–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Asensio, L., Gonzalez, I., Garcia, T., and Martin, R., Food Control, 2008, vol. 19, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  3. Wild, D., The Immunoassay Handbook, Waltham: Elsevier, 2013.

    Google Scholar 

  4. Zhang, Z., Zeng, K., and Liu, J., TrAC, Trends Anal. Chem., 2017, vol. 87, pp. 49–57.

    Article  CAS  Google Scholar 

  5. Watanabe, E., Miyake, S., and Yogo, Y., J. Agric. Food Chem., 2013, vol. 61, no. 51, pp. 12459–12472.

    Article  CAS  PubMed  Google Scholar 

  6. Vashist, S.K. and Luong, J.H.T., Handbook of Immunoassay Technologies Approaches, Performances and Applications, New York: Academic Press, 2018.

    Google Scholar 

  7. Satija, J., Punjabi, N., Mishra, D., and Mukherji, S., RSC Adv., 2016, vol. 6, no. 88, pp. 85440–85456.

    Article  CAS  Google Scholar 

  8. Chang, L., Li, J., and Wang, L., Anal. Chim. Acta, 2016, vol. 910, pp. 12–24.

    Article  CAS  PubMed  Google Scholar 

  9. Bobrow, M.N., Harris, T.D., Shaughnessy, K.J., and Litt, G.J., J. Immunol. Methods, 1989, vol. 125, nos. 1–2, pp. 279–285.

    Article  CAS  PubMed  Google Scholar 

  10. Zhan, L., Yang, T., Li, C.M., Wu, W.B., and Huang, C.Z., Sens. Actuators, 2018, vol. 255, pp. 1291–1297.

    Article  CAS  Google Scholar 

  11. Speel, E.J.M., Ramaekers, F.C.S., and Hopman, A.H.N., J. Histochem. Cytochem., 1997, vol. 45, no. 10, pp. 1439–1446.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, P., Li, C., Zhang, R., Tang, Q., Wei, J., Lu, Y., and Shen, P., Biosens. Bioelectron., 2018, vol. 126, pp. 543–550.

    Article  CAS  PubMed  Google Scholar 

  13. Kubota, K., Microbes Environ., 2013, vol. 28, no. 1, pp. 3–12.

    Article  PubMed  Google Scholar 

  14. Meany, D.L., Hackler, L., Zhang, H., and Chan, D.W., J. Proteome Res., 2011, vol. 10, no. 3, pp. 1425–1431.

    Article  CAS  PubMed  Google Scholar 

  15. Akama, K., Shirai, K., and Suzuki, S., Anal. Chem., 2016, vol. 88, no. 14, pp. 7123–7129.

    Article  CAS  PubMed  Google Scholar 

  16. Li, X., Chen, B., He, M., Xiao, G., and Hu, B., Talanta, 2018, vol. 176, pp. 40–46.

    Article  CAS  PubMed  Google Scholar 

  17. Lucas-Garrote, B., Morais, S., and Maquieira, A., Sens. Actuators, 2017, vol. 246, pp. 1108–1115.

    Article  CAS  Google Scholar 

  18. Byzova, N.A., Safenkova, I.V., Chirkov, S.N., Zherdev, A.V., Blintsov, A.N., Dzantiev, B.B., and Atabekov, I.G., Appl. Biochem. Microbiol., 2009, vol. 45, no. 2, pp. 204–209.

    Article  CAS  Google Scholar 

  19. Nikitin, N., Ksenofontov, A., Trifonova, E., Arkhipenko, M., Petrova, E., Kondakova, O., Kirpichnikov, M., Atabekov, J., Dobrov, E., and Karpova, O., FEBS Lett., 2016, vol. 590, no. 10, pp. 1543–1551.

    Article  CAS  PubMed  Google Scholar 

  20. Safenkova, I., Zherdev, A., and Dzantiev, B., Anal. Bioanal. Chem., 2012, vol. 403, no. 6, pp. 1595–1605.

    Article  CAS  PubMed  Google Scholar 

  21. Hermanson, G.T., Bioconjugate Techniques, San Diego: Academic, 2013.

    Google Scholar 

  22. Hopman, A.H.N., Ramaekers, F.C.S., and Speel, E.J.M., J. Histochem. Cytochem., 1998, vol. 46, no. 6, pp. 771–777.

    Article  CAS  PubMed  Google Scholar 

  23. Bhattacharya, R., Bhattacharya, D., and Dhar, T.K., J. Immunol. Methods, 1999, vol. 227, nos. 1–2, pp. 31–39.

    Article  CAS  PubMed  Google Scholar 

  24. Herzig, G.P.D., Aydin, M., Dunigan, S., Shah, P., Jeong, K.C., Park, S.H., Ricke, S.C., and Ahn, S., J. Food Saf., 2016, vol. 36, no. 3, pp. 383–391.

    Article  CAS  Google Scholar 

  25. Zerbini, M., Cricca, M., Gentilomi, G., Venturoli, S., Gallinella, G., and Musiani, M., Clin. Chim. Acta, 2000, vol. 302, nos. 1–2, pp. 79–87.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, L., Xu, L., and Liu, S., Anal. Chem., 2012, vol. 84, no. 24, pp. 10737–10744.

    Article  CAS  PubMed  Google Scholar 

  27. Fu, C., Jin, S., Shi, W., Oh, J., Cao, H., and Jung, Y.M., Anal. Chem., 2018, vol. 90, no. 22, pp. 13159–13162.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 14-14-01131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Dzantiev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panferova, N.A., Panferov, V.G., Safenkova, I.V. et al. Development of Enzyme-Linked Immunosorbent Assay with Tiramine Amplification for the Detection of Potato Virus X. Appl Biochem Microbiol 55, 434–440 (2019). https://doi.org/10.1134/S0003683819040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819040136

Keywords:

Navigation