Skip to main content
Log in

The Role of Nitrogen Oxide in Photomorphogenesis in Neurospora сrassa

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The role of nitric oxide in the photomorphogenesis of several Neurospora сrassa strains (the wild-type strain wt-987, the nit-2 mutant, which lacks nitrite and nitrate reductase, and the nit-6 mutant, which lacks nitrite reductase) was evaluated from the content of nitrate and nitrite, the final products of NO decomposition, in the mycelium and cultivation medium. Analysis of the dynamics of nitrite release from the mycelium of the N. crassanit-6 strain in the course of photostimulated conidiogenesis indicated the possible participation of the NO-generating mechanism in the fungal photosignal transduction. Light-regulated conidiation in N. crassa was inhibited by the introduction of S-nitrosoglutathione, a nitrogen oxide donor, to the cultivation medium, and stimulated by the introduction of L-nitroarginine, an inhibitor of NO synthase, which is inderect indicative of the role of NO in the process. However, the absence of \({\text{NO}}_{2}^{ - }\) release during the photostimulated development of the protoperithecia (precursors of the female sexual structures) indicated a low probability of NO participation in sexual propagation of the fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ricci, M., Krappmann, D., and Russo, V.E.A., Fungal Genet. Newslett., 1991, vol. 38, pp. 87–88.

    Google Scholar 

  2. Innocenti, F., Pohl, U., and Russo, V.E.A., Photochem. Photobiol., 1983, vol. 37, no. 1, pp. 49–51.

    Article  CAS  PubMed  Google Scholar 

  3. Kritsky, M.S., Russo, V.E.A., Filippovich, S.Yu., Afanasieva, T.P., and Bachurina, G.P., Photochem. Photobiol., 2002, vol. 75, no. 1, pp. 79–83.

    Article  CAS  PubMed  Google Scholar 

  4. Canovas, D., Marcos, J.F., Marcos, A.T., and Strauss, J., Curr. Genet., 2016, vol. 62, no. 3, pp. 513–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Biotechnology of Fungal Genes, Gupta, V.K. and Ayyachamy, M., Eds., Boca Raton, USA: CRC Press, 2012, p. 400.

    Google Scholar 

  6. Domitrovic, T., Palhano, F.L., Barja-Fidalgo, C., DeFreitas, M., Orlando, M.T., and Fernandes, P.M., FEMS Yeast Res., 2003, vol. 3, no. 4, pp. 341–346.

    Article  CAS  PubMed  Google Scholar 

  7. Wilken, M. and Huchzermeyer, B., Eur. J. Cell Biol., 1999, vol. 78, no. 3, pp. 209–213.

    Article  CAS  PubMed  Google Scholar 

  8. Prats, E., Carver, T.L., and Mur, L.A., Res. Microbiol., 2008, vol. 159, no. 6, pp. 476–480.

    Article  CAS  PubMed  Google Scholar 

  9. Kong, W., Huang, C., Chen, Q., Zou, Y., and Zhang, J., Fungal Genet. Biol., 2012, vol. 49, no. 1, pp. 15–20.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, W., Miao, K., Zhang, Y., Pan, S., Zhang, M., and Jiang, H., Microbiology, 2009, vol. 155, no. 10, pp. 3440–3448.

    Article  CAS  PubMed  Google Scholar 

  11. Kunert, J., Folia Microbiol., 1995, vol. 40, no. 3, pp. 238–244.

    Article  CAS  Google Scholar 

  12. Wang, J. and Higgins, V.J., Fungal Genet. Biol., 2005, vol. 42, no. 4, pp. 284–292.

    Article  CAS  PubMed  Google Scholar 

  13. Lazar, E.E., Wills, R.B., Ho, B.T., Harris, A.M., and Spohr, L.J., Lett. Appl. Microbiol., 2008, vol. 46, no. 6, pp. 688–692.

    Article  CAS  PubMed  Google Scholar 

  14. Turrion-Gomez, J.L., Eslava, A.P., and Benito, E.P., Fungal Genet. Biol., 2010, vol. 47, no. 5, pp. 484–496.

    Article  CAS  PubMed  Google Scholar 

  15. Lai, T., Li, B., Qin, G., and Tian, S., Curr. Microbiol., 2011, vol. 62, no. 1, pp. 229–234.

    Article  CAS  PubMed  Google Scholar 

  16. Maier, J., Hecker, R., Rockel, P., and Ninnemann, H., Plant Physiol., 2001, vol. 126, no. 3, pp. 1323–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song, N.K., Jeong, C.S., and Choi, I.S., Mycologia, 2000, vol. 92, no. 6, pp. 1027–1032.

    Article  CAS  Google Scholar 

  18. Gong, X., Fu, Y., Jiang, D., Li, G., Yi, X., and Peng, Y., Fungal Genet. Biol., 2007, vol. 44, no. 12, pp. 1368–1379.

    Article  CAS  PubMed  Google Scholar 

  19. Li, B., Fu, Y., Jiang, D., Xie, J., Cheng, J., Li, G., et al., Appl. Environ. Microbiol., 2010, vol. 76, no. 9, pp. 2830–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiuchetta, S.J.R. and Castro-Prado, M.A.A., Gen. Mol. Biol., 2005, vol. 28, no. 4, pp. 798–803.

    Article  CAS  Google Scholar 

  21. Ninnemann, H. and Maier, J., Photochem. Photobiol., 1996, vol. 64, no. 2, pp. 393–398.

    Article  CAS  PubMed  Google Scholar 

  22. Miranda, K.M., Espay, M.G., and Wink, D.A., Nitric Oxide: Biol. Chem., 2001, vol. 5, no. 1, pp. 62–71.

    CAS  Google Scholar 

  23. Marzluf, G.A., Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 1, pp. 17–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Filippovich, S.Yu., Bachurina, G.P., and Shcherbakov, D.L., Appl. Biochem. Microbiol., 2015, vol. 51, no. 3, pp. 342–349.

    Article  CAS  Google Scholar 

  25. Filippovich, S.Yu., Bachurina, G.P., Gessler, N.N., Golovanov, A.B., Makarova, A.M., Groza, N.V., and Belozerskaya, T.A., Appl. Biochem. Microbiol., 2015, vol. 51, no. 6, pp. 655–659.

    Article  CAS  Google Scholar 

  26. Misko, T.P., Schilling, R.J., Salvemini, D., Moore, W.M., and Currie, M.G., Anal. Biochem., 1993, vol. 214, no. 1, pp. 11–16.

    Article  CAS  PubMed  Google Scholar 

  27. Sommer, T., Degli-Innocenti, F., and Russo, V.E.A., Planta, 1987, vol. 170, no. 2, pp. 205–208.

    Article  CAS  PubMed  Google Scholar 

  28. Ninnemann, H., J. Photochem. Photobiol., vol. 9, no. 2, pp. 189–199.

  29. Sokolovsky, V.Y., Lauter, F.-R., Müller-Röber, B., Ricci, M., Schmidhauser, T.J., and Russo, V.E.A., J. Gen. Microbiol., 1992, vol. 138, no. 10, pp. 2045–2049.

    Article  Google Scholar 

  30. Filippovich, S.Yu., Bachurina, G.P., and Kritsky M.S., Appl. Biochem. Microbiol., 2007, vol. 43, no. 3, pp. 298–303.

    Article  CAS  Google Scholar 

  31. Pengkit, A., Jeon, S.S., Son, S.J., Shin, J.H., Baik, K.Y., Choi, E.H., and Park, G., Sci. Rep., 2016, vol. 6, article no. 30037. https://doi.org/10.1038/srep30037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vieira, A.L.G., Linares, E., Augusto, O., and Gomes, S.L., Fungal Genet. Biol., 2009, vol. 46, no. 8, pp. 575–584.

    Article  CAS  PubMed  Google Scholar 

  33. Samalova, M., Johnson, J., Illes, M., Kelly, S., Fricker, M., and Gurr, S., New Phytol., 2013, vol. 197, no. 1, pp. 207–222.

    Article  CAS  PubMed  Google Scholar 

  34. Marcos, A.T., Ramos, M.S., Marcos, J.F., Carmona, L., Strauss, J., and Cánovas, D., Mol. Microbiol., 2016, vol. 99, no. 1, pp. 15–33.

    Article  CAS  PubMed  Google Scholar 

  35. Zweier, J.L., Samouilov, A., and Kuppusamy, P., Biochim. Biophys. Acta, 1999, vol. 1411, nos. 2–3, pp. 250–262.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Filippovich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippovich, S.Y., Onufriev, M.V., Bachurina, G.P. et al. The Role of Nitrogen Oxide in Photomorphogenesis in Neurospora сrassa. Appl Biochem Microbiol 55, 427–433 (2019). https://doi.org/10.1134/S0003683819030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819030074

Keywords:

Navigation