Applied Biochemistry and Microbiology

, Volume 55, Issue 1, pp 32–36 | Cite as

Laccase-Catalyzed Aniline Polymerization on Multiwalled Carbon Nanotubes: the Effect of Surface Carboxyl Groups on Polyaniline Properties

  • G. P. Shumakovich
  • M. E. Khlupova
  • I. S. Vasil’eva
  • E. A. Zaitseva
  • E. V. Gromova
  • O. V. Morozova
  • A. I. YaropolovEmail author


Polyaniline/carboxylated multiwalled carbon-nanotube composites were synthesized with the use of laccase from the fungus Trametes hirsuta as a catalyst of aniline oxidative polymerization. Atmospheric oxygen was an oxidant. Aniline dimer adsorbed on the carbon material surface served as an enhancer of the enzymatic polymerization of aniline. The composites were synthesized in deionized water without any acidic dopant. The structure, morphology, and electrochemical characteristics of the obtained nanocomposite were examined. It has been shown that the carboxylic groups on the surface of multiwalled carbon nanotubes result in the electrochemical activity of polyaniline in solutions with a neutral pH.


laccase enzymatic polymerization nanocomposites polyaniline carboxylated multiwalled carbon nanotubes doping 



The work was partly financially supported by the Russian Foundation for Basic Research (project no. 17-04-00378a).

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Kobayashi, S., Uyama, H., and Kimura, S., Chem. Rev., 2001, vol. 101, no. 12, pp. 3793–3818.CrossRefGoogle Scholar
  2. 2.
    Walde, P. and Guo, Z., Soft Matter, 2011, vol. 7, pp. 316–331.CrossRefGoogle Scholar
  3. 3.
    Hollmann, F. and Arends, I.W.C.E., Polymers, 2012, vol. 4, no. 1, pp. 759–793.CrossRefGoogle Scholar
  4. 4.
    Xu, P., Singh, A., and Kaplan, D.L., Adv. Polym. Sci., 2006, vol. 194, pp. 69–94.CrossRefGoogle Scholar
  5. 5.
    Rumbau, V., Pomposo, J.A., Eleta, A., Rodriguez, J., Grande, H., Mecerreyes, D., and Ochoteco, E., Biomacromolecules, 2007, vol. 8, no. 2, pp. 315–317.CrossRefGoogle Scholar
  6. 6.
    Nagarajan, S., Kumar, J., Bruno, F.F., Samuelson, L.A., and Nagarajan, R., Macromolecules, 2008, vol. 41, no. 9, pp. 3049–3052.CrossRefGoogle Scholar
  7. 7.
    Kausaite, A. and Ramanavicius, A., Polymer, 2009, vol. 50, no. 8, pp. 1846–1851.CrossRefGoogle Scholar
  8. 8.
    Liu, W., Kumar, J., Tripathy, S., Senecal, K.J., and Samuelson, L., J. Am. Chem. Soc., 1999, vol. 121, no. 1, pp. 71–78.CrossRefGoogle Scholar
  9. 9.
    Vasil’eva, I.S., Shumakovich, G.P., Morozova, O.V., Khlupova, M.E., Vasiliev, R.B., Zaitseva, E.A., and Yaropolov, A.I., Chem. Papers, 2018. doi
  10. 10.
    Zhang, Y., Zu, L., Lian, H., Hu, Z., Jiang, Y., Liu, Y., Wang, X., and Cui, X., J. Alloys Compd., 2017, vol. 694, pp. 136–144.CrossRefGoogle Scholar
  11. 11.
    Boeva, Z.A., Milakin, K.A., Pesonen, M., Ozerin, A.N., Sergeyev, V.G., and Lindfors, T., RSC Adv., 2014, vol. 4, pp. 46340–46350.CrossRefGoogle Scholar
  12. 12.
    Milakin, K.A., Korovin, A.N., Moroz, E.V., Levon, K., Guiseppi-Elie, A., and Sergeyev, V.G., Electroanalysis, 2013, vol. 25, no. 5, pp. 1323–1330.CrossRefGoogle Scholar
  13. 13.
    Malliaras, G.G., Biochim. Biophys. Acta, 2013, vol. 1830, no. 9, pp. 4286–4287.CrossRefGoogle Scholar
  14. 14.
    Tzou, K. and Gregory, R.V., Synth. Meth., 1992, vol. 47, pp. 267–277.CrossRefGoogle Scholar
  15. 15.
    Witayakran, S. and Ragauskas, A.J., Adv. Synth. Catal., 2009, vol. 351, no. 9, pp. 1187–1209.CrossRefGoogle Scholar
  16. 16.
    Streltsov, A.V., Morozova, O.V., Arkharova, N.A., Klechkovskaya, V.V., Staroverova, I.N., Shumakovich, G.P., and Yaropolov, A.I., J. Appl. Polym. Sci., 2009, vol. 114, no. 2, pp. 928–934.CrossRefGoogle Scholar
  17. 17.
    Su, C., Wang, G., and Huang, F., J. Appl. Polym. Sci., 2007, vol. 106, no. 6, pp. 4241–4247.CrossRefGoogle Scholar
  18. 18.
    Otrokhov, G.V., Shumakovich, G.P., Khlupova, M.E., Vasil’eva, I.S., Kaplan, I.B., Zaitchik, B.T., Zaitseva, E.A., Morozova, O.V., and Yaropolov, A.I., RSC Adv., 2016, vol. 6, no. 65, pp. 60372–60375.CrossRefGoogle Scholar
  19. 19.
    Gorshina, E.S., Rusinova, T.V., Biryukov, V.V., Morozova, O.V., Shleev, S.V., and Yaropolov, A.I., Appl. Biochem. Microbiol., 2006, vol. 42, no. 6, pp. 558–563.CrossRefGoogle Scholar
  20. 20.
    Goyanes, S., Rubiolo, G.R., Salazar, A., Jimeno, A., Corcuera, M.A., and Mondragon, I., Diamond Relat. Mater., 2007, vol. 16, no. 2, pp. 412–417.CrossRefGoogle Scholar
  21. 21.
    Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., Carbon, 2008, vol. 46, no. 6, pp. 833–840.CrossRefGoogle Scholar
  22. 22.
    Aviles, F., Cauich-Rodriguez, J.V., Moo-Tah, L., May-Pat, A., and Vargas-Coronado, R., Carbon, 2009, vol. 47, no. 13, pp. 2970–2975.CrossRefGoogle Scholar
  23. 23.
    Wei, Y., Hariharan, R., and Patel, S.A., Macromolecules, 1990, vol. 23, no. 3, pp. 758–764.CrossRefGoogle Scholar
  24. 24.
    Lim, C.H. and Yoo, Y.J., Process. Biochem., 2000, vol. 36, no. 3, pp. 233–241.CrossRefGoogle Scholar
  25. 25.
    Cruz-Silva, R., Romero-Garcia, J., Angulo-Sanchez, J.L., Ledezma-Perez, A., Arias-Marin, E., Moggio, I., and Flores-Loyola, E., Eur. Pol. J., 2005, vol. 41, no. 5, pp. 1129–1135.CrossRefGoogle Scholar
  26. 26.
    Lux, F., Polymer, 1994, vol. 35, no. 14, pp. 2915–2936.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • G. P. Shumakovich
    • 1
  • M. E. Khlupova
    • 1
  • I. S. Vasil’eva
    • 1
  • E. A. Zaitseva
    • 2
  • E. V. Gromova
    • 3
  • O. V. Morozova
    • 1
  • A. I. Yaropolov
    • 1
    Email author
  1. 1.Bach Institute of Biochemistry, Fundamental Bases of Biotechnology Federal Research Center, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations