Applied Biochemistry and Microbiology

, Volume 55, Issue 1, pp 52–58 | Cite as

Study of the Location of Low-Molecular Stress-Inducible Proteins that Protect the Photosynthetic Apparatus against Photodestruction

  • L. S. Sharapova
  • D. V. Akulinkina
  • Yu. V. Bolychevseva
  • I. V. ElanskayaEmail author
  • N. P. YurinaEmail author


An association of low molecular weight, light-inducible HliA/HliA stress proteins with thylakoid chlorophyll–protein complexes of the cyanobacterium Synechocystis sp. PCC 6803 was studied. It is shown via two-dimensional electrophoresis in PAAG, mass spectrometry, and Western blotting that these light-inducible HliA/HliB stress proteins are associated with monomers and trimeric photosystem I (PSI) сomplexes and the photosystem II (PSII) complex. This suggests that these proteins play a universal role in the protection of the photosynthetic apparatus from excess light. To evaluate the functions of Hli proteins and their effect on the photochemical activity of PSI, non-HliA/HliB cells were compared with cyanobacterial cells containing these proteins. It is shown that the PSI photochemical activity was three to four times lower in the absence of HliA/HliB proteins than in the presence of Hli proteins. This suggests that Hli proteins are important for the reaction to oxygen consumption in PSI with an artificial donor and acceptor, which indicates their role in the maintenance of optimal PSI activity.


photosystem I light stress high light-inducible stress proteins 



This work was partly supported by the Russian Foundation for Basic Research, project no. 16-04-01626a, the Presidium of the Russian Academy of Sciences No. I.18 “Molecular and Cellular Biology and Post-Genomic Technologies,” and the FIT Biotechnology, Russian Academy of Sciences, no. 01201351375.

The authors thank V.F.D. Vermaas (University of Arizona, United States) for providing the mutant cyanobacteria.


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Karapetyan, N.V., Biochemistry (Moscow), 2007, vol. 72, no. 10, pp. 1127–1135.Google Scholar
  2. 2.
    Niyogi, K.K., Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 333–359.CrossRefGoogle Scholar
  3. 3.
    Kirilovsky, D. and Kerfeld, C.A., Biochim. Biophys. Acta, 2012, vol. 1817, no. 1, p. 158.CrossRefGoogle Scholar
  4. 4.
    Tibiletti, T., Hernández-Prieto, M.A., Matthijs, H.C.P., Niyogi, K.K., and Funk, C., Biochim. Biophys. Acta, 2016, vol. 1857, no. 4, pp. 396–407.CrossRefGoogle Scholar
  5. 5.
    Tibiletti, T., Rehman, A.U., and Vass, I., Photosynth. Res., 2018, vol. 135, nos. 1–3, pp. 103–114.CrossRefGoogle Scholar
  6. 6.
    Beck, J., Lohscheider, J.N., Albert, S., Andersson, U., Mendgen, K.W., Rojas-Stutz, M.C., Adamska, I., and Funck, D., Front. Plant Sci., 2017, vol. 8. doi
  7. 7.
    Funk, C. and Vermaas, W.F.J., Biochemistry, 1999, vol. 38, no. 29, pp. 9397–9404.CrossRefGoogle Scholar
  8. 8.
    Sobotka, R., McLean, S., Zuberova, M., Hunter, C.N., and Tichy, M., J. Bacteriol., 2008, vol. 190, no. 6, pp. 2086–2095.CrossRefGoogle Scholar
  9. 9.
    Sobotka, R., Tichy, M., Wilde, A., and Hunter, C.N., Plant Physiol., 2011, vol. 155, no. 4, pp. 1735–1747.CrossRefGoogle Scholar
  10. 10.
    Storm, P., Tibiletti, T., Hall, M., and Funk, C., PLoS One, 2013, vol. 8. e55569.CrossRefGoogle Scholar
  11. 11.
    Havaux, M., Guedeney, G., He, Q., and Grossman, A.R., Biochim. Biophys. Acta, 2003, vol. 1557, nos. 1–3, pp. 21–33.CrossRefGoogle Scholar
  12. 12.
    Knoppová, J., Sobotka, R., Tichy, M., Yu, J., Konik, P., Halada, P., Nixon, P.J., and Komenda, J., Plant Cell, 2014, vol. 26, no. 3, pp. 1200–1212.CrossRefGoogle Scholar
  13. 13.
    Hernández-Prieto, M.A., Tibiletti, T., Abasova, L., Kirilovsky, D., Vass, I., and Funk, C., Biochim. Biophy-s. Acta, 2011, vol. 1807, no. 9, pp. 1043–1151.Google Scholar
  14. 14.
    Yao, D.C., Brune, D.C., Vavilin, D., and Vermaas, W.F., J. Biol. Chem., 2012, vol. 287, no. 1, pp. 682–692.CrossRefGoogle Scholar
  15. 15.
    Xu, H., Vavilin, D., Funk, C., and Vermaas, W.F.J., Plant. Mol. Biol., 2002, vol. 49, no. 2, pp. 149–160.CrossRefGoogle Scholar
  16. 16.
    Xu, H., Vavilin, D., Funk, C., and Vermaas, W.F.J., J. Biol. Chem., 2004, vol. 279, no. 27, pp. 27971–27979.CrossRefGoogle Scholar
  17. 17.
    Yurina, N.P., Mokerova, D.V., and Odintsova, M.S., Russ. J. Plant Physiol., 2013, vol. 60, no. 5, pp. 577–588.CrossRefGoogle Scholar
  18. 18.
    Wang, Q., Jantaro, S., Lu, B., Majeed, W., Bailey, M., and He, Q., Plant Physiol., 2008, vol. 147, no. 3, pp. 1239–1250.CrossRefGoogle Scholar
  19. 19.
    Shen, G., Boussiba, S., and Vermaas, W.F.J., Plant Cell, 1993, vol. 5, no. 12, pp. 1853–1863.CrossRefGoogle Scholar
  20. 20.
    Akulinkina, D.V., Bolychevtseva, Y.V., Elanskaya, I.V., Karapetyan, N.V., and Yurina, N.P., Biochemistry (Moscow), 2015, vol. 80, no. 10, pp. 1254–1261.Google Scholar
  21. 21.
    Lichtenthaler, H.K., Methods Enzymol., 1987, vol. 148, pp. 350–382.CrossRefGoogle Scholar
  22. 22.
    Schreiber, U., Klughammer, C., and Neubauer, C., Z. Naturforsch, 1988, vol. 43, pp. 686–698.Google Scholar
  23. 23.
    Promnares, K., Komenda, J., Bumba, L., Nebesarova, J., Vacha, F., and Tichy, M., J. Biol. Chem., 2006, vol. 281, no. 43, pp. 32705–32713.CrossRefGoogle Scholar
  24. 24.
    Yao, D.C., Kieselbach, T., Komenda, J., Promnares, K., Hernandez-Prieto, M.A., Tichy, M., Vermaas, W.F.J., and Funk, C., J. Biol. Chem., 2007, vol. 282, no. 1, pp. 267–276.CrossRefGoogle Scholar
  25. 25.
    Kufryk, G., Hernandez-Prieto, M.A., Kieselbach, T., Miranda, H., Vermaas, W.F.J., and Funk, C., Photosynth. Res., 2008, vol. 95, nos. 2–3, pp. 135–145.CrossRefGoogle Scholar
  26. 26.
    Shi, L.X., Hall, M., Funk, C., and Schoder, W.P., B-iochim. Biophys. Acta, 2012, vol. 1817, no. 1, pp. 13–25.CrossRefGoogle Scholar
  27. 27.
    Daddy, S., Zhang, J., Jantara, S., He, C., He, Q., and Wang, Q., Sci. Rep., 2015, vol. 5, p. 9480. doi CrossRefGoogle Scholar
  28. 28.
    Kopecna, J., Komenda, J., Bucinska, L., and Sobotka, R., Plant Physiol., 2012, vol. 160, no. 4, pp. 2239–2250.CrossRefGoogle Scholar
  29. 29.
    Andersson, U., Heddad, M., and Adamska, I., Plant Physiol., 2003, vol. 132, no. 2, pp. 811–820.CrossRefGoogle Scholar
  30. 30.
    Rakhimberdieva, M.G., Boichenko, V.A., Karapetyan, N.V., and Stadnichuk, I.N., Biochemistry, 2001, vol. 40, no. 51, pp. 15780–15788.CrossRefGoogle Scholar
  31. 31.
    El-Mohsnawy, E., Kopczak, M.J., Schlodder, E., Nowaczyk, M., Meyer, H.E., Warscheid, B., Karapetyan, N.V., and Rogner, M., Biochemistry, 2010, vol. 49, no. 23, pp. 4740–4751.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State University, Biology DepartmentMoscowRussia

Personalised recommendations