Applied Biochemistry and Microbiology

, Volume 55, Issue 1, pp 1–12 | Cite as

Microorganisms and Carbon Nanotubes: Interaction and Applications (Review)

  • Yu. G. MaksimovaEmail author


The review addresses various aspects of the interaction between carbon nanotubes (CNTs) and microorganisms: the antimicrobial effects of single-walled, multiwalled, functionalized, and nonfunctionalized CNTs; the mechanism of action of these nanomaterials at the single-cell level; and their effects on soil and aquatic microorganisms. Among the mechanisms of action of CNTs on the microbial cell, one should note direct contact, which leads to disruption of the cell wall and cytoplasmic membrane, changes in membrane fluidity, oxidative stress, enzyme inhibition, and reduced transcription of several key genes. It has been shown that the antimicrobial effect of CNTs strongly depends on their diameter, length, aggregation degree, concentration, surface functionalization, degree of purification, and time and intensity of contact. The possibilities of the CNT biodegradation by microorganisms have been studied. It has been shown that the introduction of nanotubes into soils results in changes in the abundances of bacteria of certain taxonomic groups involved in biogeochemical cycles of carbon and nitrogen. This may adversely affect the cycling of these elements in the nature. The review also focuses on recent trends in the development of microbial fuel cells, biosensor technologies, bioremediation, and wastewater treatment in which CNTs display their unique electron-conducting and adsorption properties and serve as a bridge for an understanding of the beneficial aspects of microorganisms.


carbon nanotubes microorganisms antimicrobial action bioremediation biosensors microbial fuel cells 



The work was carried out within the framework of the state task, state registration number of topic no. 01201353249.


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Eletskii, A.V., Usp. Fiz. Nauk, 1997, vol. 167, no. 9, pp. 945–972.CrossRefGoogle Scholar
  2. 2.
    Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A., and Al-Warthan, A., Arabian J. Chem., 2012, vol. 5, no. 1, pp. 1–23.CrossRefGoogle Scholar
  3. 3.
    Chaturvedi, S., Dave, P.N., and Shah, N.K., J. Saudi Chem. Soc., 2012, vol. 16, no. 3, pp. 307–325.CrossRefGoogle Scholar
  4. 4.
    Zobell, C.E., J. Bacteriol., 1943, vol. 46, no. 1, pp. 39–56.Google Scholar
  5. 5.
    Kang, S., Pinault, M., Pfefferle, L.D., and Elimelech, M., Langmuir, 2007, vol. 23, no. 17, pp. 8670–8673.CrossRefGoogle Scholar
  6. 6.
    Kang, S., Herzberg, M., Rodrigues, D.F., and Elimelech, M., Langmuir, 2008, vol. 24, no. 13, pp. 6409–6413.CrossRefGoogle Scholar
  7. 7.
    Zarubina, A.P., Lukashev, E.P., Deev, L.I., Parkhomenko, I.M., and Rubin, A.B., Ross. Nanotekhnol., 2009, vol. 4, no. 11-12, pp. 152–155.Google Scholar
  8. 8.
    Liu, S., Ng, A.K., Xu, R., Wei, J., Tan, C.M., Yang, Y., and Chen, Y., Nanoscale, 2010, vol. 2, no. 12, pp. 2744–2750.CrossRefGoogle Scholar
  9. 9.
    Yang, C., Mamouni, J., Tang, Y., and Yang, L., Langmuir, 2010, vol. 26, no. 20, pp. 16013–16019.CrossRefGoogle Scholar
  10. 10.
    Jackson, P., Jacobsen, N.R., Baun, A., Birkedal, R., Kühnel, D., Jensen, K.A., Vogel, U., and Wallin, H., Chem. Cent. J., 2013, vol. 7, p. 154.CrossRefGoogle Scholar
  11. 11.
    Dong, X., Tang, Y., Wu, M., Vlahovic, B., and Yang, L., J. Biol. Eng., 2013, vol. 7, p. 19.CrossRefGoogle Scholar
  12. 12.
    Upadhyayula, V.K.K., Deng, S., Smith, G.B., and Mitchell, M.C., Water Res., 2009, vol. 43, no. 1, pp. 148–156.CrossRefGoogle Scholar
  13. 13.
    Sah, U., Sharma, K., Chaudhri, N., Sankar, M., and Gopinath, P., Colloids Surf. B, 2018, vol. 162, pp. 108–117.CrossRefGoogle Scholar
  14. 14.
    Vecitis, C.D., Zodrow, K.R., Kang, S., and Elimelech, M., ACS Nano, 2010, vol. 4, no. 9, pp. 5471–5479.CrossRefGoogle Scholar
  15. 15.
    Chen, M., Zeng, G., Xu, P., Yan, M., Xiong, W., and Zhou, S., Environ. Sci.: Nano, 2017, vol. 4, no. 10, pp. 1954–1960.Google Scholar
  16. 16.
    Bai, Y., Park, I.S., Lee, S.J., Bae, T.S., Watari, F., Uo, M., and Lee, M.H., Carbon, 2011, vol. 49, no. 11, pp. 3663–3671.CrossRefGoogle Scholar
  17. 17.
    Zardini, H.Z., Amiri, A., Shanbedi, M., Maghrebi, M., and Baniadam, M., Colloids Surf. B, 2012, vol. 92, pp. 196–202.CrossRefGoogle Scholar
  18. 18.
    Chi, M.-F., Wu, W.-L., Du, Y., Chin, C.-J.M., and Lin, C.-C., J. Hazard. Mater., 2016, vol. 318, pp. 507–514.CrossRefGoogle Scholar
  19. 19.
    Maas, M., Materials, 2016, vol. 9, no. 8, pii E617.CrossRefGoogle Scholar
  20. 20.
    Qi, X., Gunawan, P., Xu, R., and Chang, M.W., Chem. Eng. Sci., 2012, vol. 84, pp. 552–556.CrossRefGoogle Scholar
  21. 21.
    Dizaj, S.M., Mennati, A., Jafari, S., Khezri, K., and Adibkia, K., Adv. Pharm. Bull., 2015, vol. 5, no. 1, pp. 19–23.Google Scholar
  22. 22.
    US Patent no. 20120213663, 2012.Google Scholar
  23. 23.
    US Patent no. 8754041, 2014.Google Scholar
  24. 24.
    Lin, N., Berton, P., Moraes, C., Rogers, R.D., and Tufenkji, N., Adv. Colloid Interfac., 2018, vol. 252, pp. 55–68.CrossRefGoogle Scholar
  25. 25.
    Phillips, C.L., Yah, C.S., Iyuke, S.E., Rumbold, K., and Pillay, V., J. Saudi Chem. Soc., 2015, vol. 19, no. 2, pp. 147–154.CrossRefGoogle Scholar
  26. 26.
    Park, W.-I., Kim, H.-S., Kwon, S.-M., Hong, Y.-H., and Jin, H.-J., Carbohydr. Res., 2009, vol. 77, no. 3, pp. 457–463.CrossRefGoogle Scholar
  27. 27.
    Maksimova, Yu.G., Nikulin, S.M., Osovetskii, B.M., and Demakov, V.A., Appl. Biochem. Microbiol., 2017, vol. 53, no. 5, pp. 506–512.CrossRefGoogle Scholar
  28. 28.
    Brandeburová, P., Bírošová, L., Vojs, M., Kromka, A., Gál, M., Tichý, J., Híveš, J., and Mackuľak, T., Monatsh. Chem., 2017, vol. 148, no. 3, pp. 525–530.CrossRefGoogle Scholar
  29. 29.
    Deryabin, D.G., Vasil’chenko, A.S., Aleshina, E.S., Tlyagulova, A.S., and Nikiyan, A.N., Ross. Nanotekhnol., 2010, vol. 5, no. 11-12, pp. 103–108.Google Scholar
  30. 30.
    Di Sotto, A., Chiaretti, M., Carru, G.A., Bellucci, S., and Mazzanti, G., Toxicol. Lett., 2009, vol. 184, no. 3, pp. 192–197.CrossRefGoogle Scholar
  31. 31.
    Arias, L.R. and Yang, L., Langmuir, 2009, vol. 25, no. 5, pp. 3003–3012.CrossRefGoogle Scholar
  32. 32.
    Zhu, B., Xia, X., Xia, N., Zhang, S., and Guo, X., Environ. Sci. Technol., 2014, vol. 48, no. 7, pp. 4086–4095.CrossRefGoogle Scholar
  33. 33.
    Goodwin, Jr.D.G., Marsh, K.M., Sosa, I.B., Payne, J.B., Gorham, J.M., Bouwer, E.J., and Fairbrother, D.H., Environ. Sci. Technol., 2015, vol. 49, no. 9, pp. 5484–5492.CrossRefGoogle Scholar
  34. 34.
    Zhao, X. and Liu, R., Environ. Int., 2012, vol. 40, pp. 244–256.CrossRefGoogle Scholar
  35. 35.
    Upadhyayula, V.K.K. and Gadhamshetty, V., Biotechnol. Adv., 2010, vol. 28, no. 6, pp. 802–816.CrossRefGoogle Scholar
  36. 36.
    Sun, Y. and Zhang, Z., Int. Biodeterior. Biodegrad., 2016, vol. 110, pp. 147–154.CrossRefGoogle Scholar
  37. 37.
    Goodwin, D.G.,Jr., Xia, Z., Gordon, T.B., Gao, C., Bouwerb, E.J., and Fairbrother, D.H., Environ. Sci.: Nano, 2016, vol. 3, no. 3, pp. 545–558.Google Scholar
  38. 38.
    Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M.S.M., and Ramakrishna, S., Desalination, 2014, vol. 354, pp. 160–179.CrossRefGoogle Scholar
  39. 39.
    Chen, H., Wang, B., Gao, D., Guan, M., Zheng, L., Ouyang, H., Chai, Z., Zhao, Y., and Feng, W., Small, 2013, vol. 9, no. 16, pp. 2735–2746.CrossRefGoogle Scholar
  40. 40.
    Khodakovskaya, M.V., de Silva, K., Biris, A.S., Dervishi, E., and Villagarcia, H., ACS Nano, 2012, vol. 6, no. 3, pp. 2128–2135.CrossRefGoogle Scholar
  41. 41.
    Khodakovskaya, M.V., Kim, B.-S., Kim, J.N., Alimohammadi, M., Dervishi, E., Mustafa, T., and Cernigla, C.E., Small, 2013, vol. 9, no. 1, pp. 115–123.CrossRefGoogle Scholar
  42. 42.
    Zaytseva, O. and Neumann, G., Chem. Biol. Technol. Agric., 2016, vol. 3, p. 17.CrossRefGoogle Scholar
  43. 43.
    Shrestha, B., Acosta-Martinez, V., Cox, S.B., Green, M.J., Li, S., and Cañas-Carrell, J.E., J. Hazard. Mater., 2013, vol. 261, pp. 188–197.CrossRefGoogle Scholar
  44. 44.
    Abbasian, F., Lockington, R., Palanisami, T., Megharaj, M., and Naidu, R., Sci. Total Environ., 2016, vol. 539, pp. 370–380.CrossRefGoogle Scholar
  45. 45.
    Shrestha, B., Anderson, T.A., Acosta-Martinez, V., Payton, P., and Can?as-Carrell, J.E., Ecotoxicol. Environ. Saf, 2015, vol. 116, pp. 143–149.CrossRefGoogle Scholar
  46. 46.
    Kerfahi, D., Tripathi, B.M., Singh, D., Kim, H., Lee, S., Lee, J., and Adams, J.M., PLoS One, 2015, vol. 10, no. 3. e0123042.CrossRefGoogle Scholar
  47. 47.
    Hao, Y., Ma, C., Zhang, Z., Song, Y., Cao, W., Guo, J., Zhou, G., Rui, Y., Liu, L., and Xing, B., Environ. Pollut., 2018, vol. 232, pp. 123–136.CrossRefGoogle Scholar
  48. 48.
    Chung, H., Son, Y., Yoon, T.K., Kim, S., and Kim, W., Ecotoxicol. Environ. Saf., 2011, vol. 74, no. 4, pp. 569–575.CrossRefGoogle Scholar
  49. 49.
    Jin, L., Son, Y., Yoon, T.K., Kang, Y.J., Kim, W., and Chung, H., Ecotoxicol. Environ. Saf., 2013, vol. 88, pp. 9–15.CrossRefGoogle Scholar
  50. 50.
    Chen, Q., Wang, H., Yang, B., He, F., Han, X., and Song, Z., Sci. Total Environ., 2015, vol. 505, pp. 649–657.CrossRefGoogle Scholar
  51. 51.
    Su, Y., Zheng, X., Chen, A., Chen, Y., He, G., and Chen, H., Chem. Eng. J., 2015, vol. 279, pp. 47–55.CrossRefGoogle Scholar
  52. 52.
    Zheng, X., Su, Y., Chen, Y., Huang, H., and Shena, Q., Sci. Total Environ., 2018, vol. 613-614, pp. 1240–1249.CrossRefGoogle Scholar
  53. 53.
    Wang, F., Yao, J., Liu, H., Liu, R., Chen, H., Yi, Z., Yu, Q., Ma, L., and Xing, B., J. Hazard. Mater., 2015, vol. 292, pp. 137–145.CrossRefGoogle Scholar
  54. 54.
    Zhu, B., Xia, X., Zhang, S., and Tang, Y., Environ. Pollut., 2018, vol. 234, pp. 581–589.CrossRefGoogle Scholar
  55. 55.
    Goyal, D., Zhang, X.J., and Rooney-Varga, J.N., Lett. Appl. Microbiol., 2010, vol. 51, no. 4, pp. 428–435.CrossRefGoogle Scholar
  56. 56.
    Zhang, L., Petersen, E.J., Habteselassie, M.Y., Mao, L., and Huang, Q., Environ. Pollut., 2013, vol. 181, pp. 335–339.CrossRefGoogle Scholar
  57. 57.
    You, Y., Das, K.K., Guo, H., Chang, C.W., Navas-Moreno, M., Chan, J.W., Verburg, P., Poulson, S.R., Wang, X., Xing, B., and Yang, Y., Environ. Sci. Technol., 2017, vol. 51, no. 4, pp. 2068–2076.CrossRefGoogle Scholar
  58. 58.
    Moliver, S.S., Zimagullov, R.R., and Semenov, A.L., Pis’ma Zh. Tekh. Fiz., 2011, vol. 37, no. 14, pp. 68–75.Google Scholar
  59. 59.
    Chouhan, R.S., Qureshi, A., Yagci, B., Gulgun, M.A., Ozguz, V., and Niazi, J.H., Chem. Eng. J., 2016, vol. 298, pp. 1–9.CrossRefGoogle Scholar
  60. 60.
    Chandrasekaran, G., Choi, S.-K., Lee, Y.-C., Kim, G.-J., and Shin, H.-J., J. Ind. Eng. Chem., 2014, vol. 20, no. 5, pp. 3367–3374.CrossRefGoogle Scholar
  61. 61.
    Chen, M., Qin, X., and Zeng, G., Trends Biotech., 2017, vol. 35, no. 9, pp. 836–846.CrossRefGoogle Scholar
  62. 62.
    Raie, D.S., Mhatre, E., El-Desouki, D.S., Labena, A., El-Ghannam, G., Farahat, L.A., Youssef, T., Fritzsche, W., and Kovács, Á.T., Materials, 2018, vol. 11, no. 1, pii: E157.CrossRefGoogle Scholar
  63. 63.
    Alvarez, N.T., Noga, R., Chae, S.-R., Sorial, G.A., Ryu, H., and Shanov, V., Biofouling, 2017, vol. 33, no. 10, pp. 847–854.CrossRefGoogle Scholar
  64. 64.
    Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., and Kim, Y.H., Nat. Commun., 2015, vol. 6, p. 7109.CrossRefGoogle Scholar
  65. 65.
    Yan, H., Pan, G., Zou, H., Li, X., and Chen, H., Chin. Sci. Bull., 2004, vol. 49, no. 16, pp. 1694–1698.CrossRefGoogle Scholar
  66. 66.
    Zhang, C., Li, M., Xu, X., and Liu, N., J. Hazard. Mater., 2015, vol. 287, pp. 1–6.CrossRefGoogle Scholar
  67. 67.
    Qu, Y., Wang, J., Zhou, H., Ma, Q., Zhang, Z., Li, D., Shen, W., and Zhou, J., Environ. Sci. Pollut. Res., 2016, vol. 23, no. 3, pp. 2864–2872.CrossRefGoogle Scholar
  68. 68.
    Yang, F., Jiang, Q., Zhu, M., Zhao, L., and Zhang, Y., Sci. Total. Environ., 2017, vol. 577, pp. 54–60.CrossRefGoogle Scholar
  69. 69.
    Özdemir, S., Oduncu, M.K., Kilinc, E., and Soylak, M., J. Environ. Manage., 2017, vol. 187, pp. 490–496.CrossRefGoogle Scholar
  70. 70.
    Sonawane, J.M., Yadav, A., Ghosh, P.C., and Adeloju, S.B., Biosens. Bioelectron., 2017, vol. 90, pp. 558–576.CrossRefGoogle Scholar
  71. 71.
    Sharma, T., Reddy, A.L.M., Chandra, T.S., and Ramaprabhu, S., Int. J. Hydrogen Energy, 2008, vol. 33, no. 22, pp. 6749–6754.CrossRefGoogle Scholar
  72. 72.
    Minteer, S.D., Atanassov, P., Luckarift, H.R., and Johnson, G.R., Materials Today, 2012, vol. 15, no. 4, pp. 166–173.CrossRefGoogle Scholar
  73. 73.
    Ghasemi, M., Daud, W.R.W., Hassan, S.H.A., Ohc, S.-E., Ismail, M., Rahimnejad, M., and Jahim, J.M., J. Alloys Compd., 2013, vol. 580, pp. 245–255.CrossRefGoogle Scholar
  74. 74.
    Zhang, X., Epifanio, M., and Marsili, E., Electrochim. Acta, 2013, vol. 102, pp. 252–258.CrossRefGoogle Scholar
  75. 75.
    He, Y., Liu, Z., Xing, X.-H., Li, B., Zhang, Y., Shen, R., Zhu, Z., and Duan, N., Biochem. Eng. J., 2015, vol. 94, pp. 39–44.CrossRefGoogle Scholar
  76. 76.
    Wei, H., Wu, X.-S., Zou, L., Wen, G.-Y., Liu, D.-Y., and Qiao, Y., J. Power Sources, 2016, vol. 315, pp. 192–198.CrossRefGoogle Scholar
  77. 77.
    Zou, L., Qiao, Y., Wu, X.-S., and Li, C.M., J. Power Sources, 2016, vol. 328, pp. 143–150.CrossRefGoogle Scholar
  78. 78.
    Yazdi, A.A., D’Angelo, L., Omer, N., Windiasti, G., Lu, X., and Xu, J., Biosens. Bioelectron., 2016, vol. 85, pp. 536–552.CrossRefGoogle Scholar
  79. 79.
    Chen, Y., Xu, Y., Chen, L., Li, P., Zhu, S., and Shen, S., Energy, 2015, vol. 88, pp. 377–384.CrossRefGoogle Scholar
  80. 80.
    Lawal, A.T., Mater. Res. Bull., 2016, vol. 73, pp. 308–350.CrossRefGoogle Scholar
  81. 81.
    Bardhan, N.M., Ghosh, D., and Belcher, A.M., Nat. Commun., 2014, vol. 5, p. 4918.CrossRefGoogle Scholar
  82. 82.
    Sireesha, M., Babu, V.J., and Ramakrishna, S., J. Mater. Sci. Eng. B, 2017, vol. 223, pp. 43–63.CrossRefGoogle Scholar
  83. 83.
    Li, L., Liang, B., Shi, J., Li, F., Mascini, M., and Liu, A., Biosens. Bioelectron., 2012, vol. 33, no. 1, pp. 100–105.CrossRefGoogle Scholar
  84. 84.
    Andrade, C.A.S., Nascimento, J.M., Oliveira, I.S., de Oliveira, C.V.J., de Melo, C.P., Franco, O.L., and Oliveira, M.D.L., Colloids Surf. B, 2015, vol. 135, pp. 833–839.CrossRefGoogle Scholar
  85. 85.
    Tarditto, L.V., Arévalo, F.J., Zon, M.A., Ovando, H.G., Vettorazzi, N.R., and Fernández, H., Microchem. J., 2016, vol. 127, pp. 220–225.CrossRefGoogle Scholar
  86. 86.
    Lakhin, A.V., Tarantul, V.Z., and Gening, L.V., Acta Naturae, 2013, vol. 5, no. 4 (19), pp. 37–48.Google Scholar
  87. 87.
    Templier, V., Roux, A., Roupioz, Y., and Livache, T., TrAC, Trends Anal. Chem. (Pers. Ed.), 2016, vol. 79, pp. 71–79.Google Scholar
  88. 88.
    Zelada-Guillén, G.A., Blondeau, P., Rius, F.X., and Riu, J., Methods, 2013, vol. 63, no. 3, pp. 233–238.CrossRefGoogle Scholar
  89. 89.
    Landry, M.P., Ando, H., Chen, A.Y., Cao, J., Kottadiel, V.I., Chio, L., Yang, D., Dong, J., Lu, T.K., and Strano, M.S., Nat. Nanotechnol., 2017, vol. 12, no. 4, pp. 368–377.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of SciencesPermRussia
  2. 2.Perm State National Research UniversityPermRussia

Personalised recommendations