Skip to main content
Log in

Microorganisms and Carbon Nanotubes: Interaction and Applications (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The review addresses various aspects of the interaction between carbon nanotubes (CNTs) and microorganisms: the antimicrobial effects of single-walled, multiwalled, functionalized, and nonfunctionalized CNTs; the mechanism of action of these nanomaterials at the single-cell level; and their effects on soil and aquatic microorganisms. Among the mechanisms of action of CNTs on the microbial cell, one should note direct contact, which leads to disruption of the cell wall and cytoplasmic membrane, changes in membrane fluidity, oxidative stress, enzyme inhibition, and reduced transcription of several key genes. It has been shown that the antimicrobial effect of CNTs strongly depends on their diameter, length, aggregation degree, concentration, surface functionalization, degree of purification, and time and intensity of contact. The possibilities of the CNT biodegradation by microorganisms have been studied. It has been shown that the introduction of nanotubes into soils results in changes in the abundances of bacteria of certain taxonomic groups involved in biogeochemical cycles of carbon and nitrogen. This may adversely affect the cycling of these elements in the nature. The review also focuses on recent trends in the development of microbial fuel cells, biosensor technologies, bioremediation, and wastewater treatment in which CNTs display their unique electron-conducting and adsorption properties and serve as a bridge for an understanding of the beneficial aspects of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Eletskii, A.V., Usp. Fiz. Nauk, 1997, vol. 167, no. 9, pp. 945–972.

    Article  CAS  Google Scholar 

  2. Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A., and Al-Warthan, A., Arabian J. Chem., 2012, vol. 5, no. 1, pp. 1–23.

    Article  CAS  Google Scholar 

  3. Chaturvedi, S., Dave, P.N., and Shah, N.K., J. Saudi Chem. Soc., 2012, vol. 16, no. 3, pp. 307–325.

    Article  CAS  Google Scholar 

  4. Zobell, C.E., J. Bacteriol., 1943, vol. 46, no. 1, pp. 39–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kang, S., Pinault, M., Pfefferle, L.D., and Elimelech, M., Langmuir, 2007, vol. 23, no. 17, pp. 8670–8673.

    Article  CAS  PubMed  Google Scholar 

  6. Kang, S., Herzberg, M., Rodrigues, D.F., and Elimelech, M., Langmuir, 2008, vol. 24, no. 13, pp. 6409–6413.

    Article  CAS  Google Scholar 

  7. Zarubina, A.P., Lukashev, E.P., Deev, L.I., Parkhomenko, I.M., and Rubin, A.B., Ross. Nanotekhnol., 2009, vol. 4, no. 11-12, pp. 152–155.

    Google Scholar 

  8. Liu, S., Ng, A.K., Xu, R., Wei, J., Tan, C.M., Yang, Y., and Chen, Y., Nanoscale, 2010, vol. 2, no. 12, pp. 2744–2750.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, C., Mamouni, J., Tang, Y., and Yang, L., Langmuir, 2010, vol. 26, no. 20, pp. 16013–16019.

    Article  CAS  PubMed  Google Scholar 

  10. Jackson, P., Jacobsen, N.R., Baun, A., Birkedal, R., Kühnel, D., Jensen, K.A., Vogel, U., and Wallin, H., Chem. Cent. J., 2013, vol. 7, p. 154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong, X., Tang, Y., Wu, M., Vlahovic, B., and Yang, L., J. Biol. Eng., 2013, vol. 7, p. 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Upadhyayula, V.K.K., Deng, S., Smith, G.B., and Mitchell, M.C., Water Res., 2009, vol. 43, no. 1, pp. 148–156.

    Article  CAS  PubMed  Google Scholar 

  13. Sah, U., Sharma, K., Chaudhri, N., Sankar, M., and Gopinath, P., Colloids Surf. B, 2018, vol. 162, pp. 108–117.

    Article  CAS  Google Scholar 

  14. Vecitis, C.D., Zodrow, K.R., Kang, S., and Elimelech, M., ACS Nano, 2010, vol. 4, no. 9, pp. 5471–5479.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, M., Zeng, G., Xu, P., Yan, M., Xiong, W., and Zhou, S., Environ. Sci.: Nano, 2017, vol. 4, no. 10, pp. 1954–1960.

    CAS  Google Scholar 

  16. Bai, Y., Park, I.S., Lee, S.J., Bae, T.S., Watari, F., Uo, M., and Lee, M.H., Carbon, 2011, vol. 49, no. 11, pp. 3663–3671.

    Article  CAS  Google Scholar 

  17. Zardini, H.Z., Amiri, A., Shanbedi, M., Maghrebi, M., and Baniadam, M., Colloids Surf. B, 2012, vol. 92, pp. 196–202.

    Article  CAS  Google Scholar 

  18. Chi, M.-F., Wu, W.-L., Du, Y., Chin, C.-J.M., and Lin, C.-C., J. Hazard. Mater., 2016, vol. 318, pp. 507–514.

    Article  CAS  PubMed  Google Scholar 

  19. Maas, M., Materials, 2016, vol. 9, no. 8, pii E617.

    Article  CAS  PubMed  Google Scholar 

  20. Qi, X., Gunawan, P., Xu, R., and Chang, M.W., Chem. Eng. Sci., 2012, vol. 84, pp. 552–556.

    Article  CAS  Google Scholar 

  21. Dizaj, S.M., Mennati, A., Jafari, S., Khezri, K., and Adibkia, K., Adv. Pharm. Bull., 2015, vol. 5, no. 1, pp. 19–23.

    CAS  Google Scholar 

  22. US Patent no. 20120213663, 2012.

  23. US Patent no. 8754041, 2014.

  24. Lin, N., Berton, P., Moraes, C., Rogers, R.D., and Tufenkji, N., Adv. Colloid Interfac., 2018, vol. 252, pp. 55–68.

    Article  CAS  Google Scholar 

  25. Phillips, C.L., Yah, C.S., Iyuke, S.E., Rumbold, K., and Pillay, V., J. Saudi Chem. Soc., 2015, vol. 19, no. 2, pp. 147–154.

    Article  Google Scholar 

  26. Park, W.-I., Kim, H.-S., Kwon, S.-M., Hong, Y.-H., and Jin, H.-J., Carbohydr. Res., 2009, vol. 77, no. 3, pp. 457–463.

    Article  CAS  Google Scholar 

  27. Maksimova, Yu.G., Nikulin, S.M., Osovetskii, B.M., and Demakov, V.A., Appl. Biochem. Microbiol., 2017, vol. 53, no. 5, pp. 506–512.

    Article  CAS  Google Scholar 

  28. Brandeburová, P., Bírošová, L., Vojs, M., Kromka, A., Gál, M., Tichý, J., Híveš, J., and Mackuľak, T., Monatsh. Chem., 2017, vol. 148, no. 3, pp. 525–530.

    Article  CAS  Google Scholar 

  29. Deryabin, D.G., Vasil’chenko, A.S., Aleshina, E.S., Tlyagulova, A.S., and Nikiyan, A.N., Ross. Nanotekhnol., 2010, vol. 5, no. 11-12, pp. 103–108.

    Google Scholar 

  30. Di Sotto, A., Chiaretti, M., Carru, G.A., Bellucci, S., and Mazzanti, G., Toxicol. Lett., 2009, vol. 184, no. 3, pp. 192–197.

    Article  CAS  PubMed  Google Scholar 

  31. Arias, L.R. and Yang, L., Langmuir, 2009, vol. 25, no. 5, pp. 3003–3012.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, B., Xia, X., Xia, N., Zhang, S., and Guo, X., Environ. Sci. Technol., 2014, vol. 48, no. 7, pp. 4086–4095.

    Article  CAS  PubMed  Google Scholar 

  33. Goodwin, Jr.D.G., Marsh, K.M., Sosa, I.B., Payne, J.B., Gorham, J.M., Bouwer, E.J., and Fairbrother, D.H., Environ. Sci. Technol., 2015, vol. 49, no. 9, pp. 5484–5492.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, X. and Liu, R., Environ. Int., 2012, vol. 40, pp. 244–256.

    Article  CAS  PubMed  Google Scholar 

  35. Upadhyayula, V.K.K. and Gadhamshetty, V., Biotechnol. Adv., 2010, vol. 28, no. 6, pp. 802–816.

    Article  CAS  PubMed  Google Scholar 

  36. Sun, Y. and Zhang, Z., Int. Biodeterior. Biodegrad., 2016, vol. 110, pp. 147–154.

    Article  CAS  Google Scholar 

  37. Goodwin, D.G.,Jr., Xia, Z., Gordon, T.B., Gao, C., Bouwerb, E.J., and Fairbrother, D.H., Environ. Sci.: Nano, 2016, vol. 3, no. 3, pp. 545–558.

    CAS  Google Scholar 

  38. Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M.S.M., and Ramakrishna, S., Desalination, 2014, vol. 354, pp. 160–179.

    Article  CAS  Google Scholar 

  39. Chen, H., Wang, B., Gao, D., Guan, M., Zheng, L., Ouyang, H., Chai, Z., Zhao, Y., and Feng, W., Small, 2013, vol. 9, no. 16, pp. 2735–2746.

    Article  CAS  PubMed  Google Scholar 

  40. Khodakovskaya, M.V., de Silva, K., Biris, A.S., Dervishi, E., and Villagarcia, H., ACS Nano, 2012, vol. 6, no. 3, pp. 2128–2135.

    Article  CAS  PubMed  Google Scholar 

  41. Khodakovskaya, M.V., Kim, B.-S., Kim, J.N., Alimohammadi, M., Dervishi, E., Mustafa, T., and Cernigla, C.E., Small, 2013, vol. 9, no. 1, pp. 115–123.

    Article  CAS  PubMed  Google Scholar 

  42. Zaytseva, O. and Neumann, G., Chem. Biol. Technol. Agric., 2016, vol. 3, p. 17.

    Article  CAS  Google Scholar 

  43. Shrestha, B., Acosta-Martinez, V., Cox, S.B., Green, M.J., Li, S., and Cañas-Carrell, J.E., J. Hazard. Mater., 2013, vol. 261, pp. 188–197.

    Article  CAS  PubMed  Google Scholar 

  44. Abbasian, F., Lockington, R., Palanisami, T., Megharaj, M., and Naidu, R., Sci. Total Environ., 2016, vol. 539, pp. 370–380.

    Article  CAS  PubMed  Google Scholar 

  45. Shrestha, B., Anderson, T.A., Acosta-Martinez, V., Payton, P., and Can?as-Carrell, J.E., Ecotoxicol. Environ. Saf, 2015, vol. 116, pp. 143–149.

    Article  CAS  PubMed  Google Scholar 

  46. Kerfahi, D., Tripathi, B.M., Singh, D., Kim, H., Lee, S., Lee, J., and Adams, J.M., PLoS One, 2015, vol. 10, no. 3. e0123042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hao, Y., Ma, C., Zhang, Z., Song, Y., Cao, W., Guo, J., Zhou, G., Rui, Y., Liu, L., and Xing, B., Environ. Pollut., 2018, vol. 232, pp. 123–136.

    Article  CAS  PubMed  Google Scholar 

  48. Chung, H., Son, Y., Yoon, T.K., Kim, S., and Kim, W., Ecotoxicol. Environ. Saf., 2011, vol. 74, no. 4, pp. 569–575.

    Article  CAS  PubMed  Google Scholar 

  49. Jin, L., Son, Y., Yoon, T.K., Kang, Y.J., Kim, W., and Chung, H., Ecotoxicol. Environ. Saf., 2013, vol. 88, pp. 9–15.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Q., Wang, H., Yang, B., He, F., Han, X., and Song, Z., Sci. Total Environ., 2015, vol. 505, pp. 649–657.

    Article  CAS  PubMed  Google Scholar 

  51. Su, Y., Zheng, X., Chen, A., Chen, Y., He, G., and Chen, H., Chem. Eng. J., 2015, vol. 279, pp. 47–55.

    Article  CAS  Google Scholar 

  52. Zheng, X., Su, Y., Chen, Y., Huang, H., and Shena, Q., Sci. Total Environ., 2018, vol. 613-614, pp. 1240–1249.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, F., Yao, J., Liu, H., Liu, R., Chen, H., Yi, Z., Yu, Q., Ma, L., and Xing, B., J. Hazard. Mater., 2015, vol. 292, pp. 137–145.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, B., Xia, X., Zhang, S., and Tang, Y., Environ. Pollut., 2018, vol. 234, pp. 581–589.

    Article  CAS  PubMed  Google Scholar 

  55. Goyal, D., Zhang, X.J., and Rooney-Varga, J.N., Lett. Appl. Microbiol., 2010, vol. 51, no. 4, pp. 428–435.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, L., Petersen, E.J., Habteselassie, M.Y., Mao, L., and Huang, Q., Environ. Pollut., 2013, vol. 181, pp. 335–339.

    Article  CAS  PubMed  Google Scholar 

  57. You, Y., Das, K.K., Guo, H., Chang, C.W., Navas-Moreno, M., Chan, J.W., Verburg, P., Poulson, S.R., Wang, X., Xing, B., and Yang, Y., Environ. Sci. Technol., 2017, vol. 51, no. 4, pp. 2068–2076.

    Article  CAS  PubMed  Google Scholar 

  58. Moliver, S.S., Zimagullov, R.R., and Semenov, A.L., Pis’ma Zh. Tekh. Fiz., 2011, vol. 37, no. 14, pp. 68–75.

    Google Scholar 

  59. Chouhan, R.S., Qureshi, A., Yagci, B., Gulgun, M.A., Ozguz, V., and Niazi, J.H., Chem. Eng. J., 2016, vol. 298, pp. 1–9.

    Article  CAS  Google Scholar 

  60. Chandrasekaran, G., Choi, S.-K., Lee, Y.-C., Kim, G.-J., and Shin, H.-J., J. Ind. Eng. Chem., 2014, vol. 20, no. 5, pp. 3367–3374.

    Article  CAS  Google Scholar 

  61. Chen, M., Qin, X., and Zeng, G., Trends Biotech., 2017, vol. 35, no. 9, pp. 836–846.

    Article  CAS  Google Scholar 

  62. Raie, D.S., Mhatre, E., El-Desouki, D.S., Labena, A., El-Ghannam, G., Farahat, L.A., Youssef, T., Fritzsche, W., and Kovács, Á.T., Materials, 2018, vol. 11, no. 1, pii: E157.

    Article  CAS  PubMed  Google Scholar 

  63. Alvarez, N.T., Noga, R., Chae, S.-R., Sorial, G.A., Ryu, H., and Shanov, V., Biofouling, 2017, vol. 33, no. 10, pp. 847–854.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., and Kim, Y.H., Nat. Commun., 2015, vol. 6, p. 7109.

    Article  CAS  PubMed  Google Scholar 

  65. Yan, H., Pan, G., Zou, H., Li, X., and Chen, H., Chin. Sci. Bull., 2004, vol. 49, no. 16, pp. 1694–1698.

    Article  CAS  Google Scholar 

  66. Zhang, C., Li, M., Xu, X., and Liu, N., J. Hazard. Mater., 2015, vol. 287, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  67. Qu, Y., Wang, J., Zhou, H., Ma, Q., Zhang, Z., Li, D., Shen, W., and Zhou, J., Environ. Sci. Pollut. Res., 2016, vol. 23, no. 3, pp. 2864–2872.

    Article  CAS  Google Scholar 

  68. Yang, F., Jiang, Q., Zhu, M., Zhao, L., and Zhang, Y., Sci. Total. Environ., 2017, vol. 577, pp. 54–60.

    Article  CAS  PubMed  Google Scholar 

  69. Özdemir, S., Oduncu, M.K., Kilinc, E., and Soylak, M., J. Environ. Manage., 2017, vol. 187, pp. 490–496.

    Article  CAS  PubMed  Google Scholar 

  70. Sonawane, J.M., Yadav, A., Ghosh, P.C., and Adeloju, S.B., Biosens. Bioelectron., 2017, vol. 90, pp. 558–576.

    Article  CAS  PubMed  Google Scholar 

  71. Sharma, T., Reddy, A.L.M., Chandra, T.S., and Ramaprabhu, S., Int. J. Hydrogen Energy, 2008, vol. 33, no. 22, pp. 6749–6754.

    Article  CAS  Google Scholar 

  72. Minteer, S.D., Atanassov, P., Luckarift, H.R., and Johnson, G.R., Materials Today, 2012, vol. 15, no. 4, pp. 166–173.

    Article  CAS  Google Scholar 

  73. Ghasemi, M., Daud, W.R.W., Hassan, S.H.A., Ohc, S.-E., Ismail, M., Rahimnejad, M., and Jahim, J.M., J. Alloys Compd., 2013, vol. 580, pp. 245–255.

    Article  CAS  Google Scholar 

  74. Zhang, X., Epifanio, M., and Marsili, E., Electrochim. Acta, 2013, vol. 102, pp. 252–258.

    Article  CAS  Google Scholar 

  75. He, Y., Liu, Z., Xing, X.-H., Li, B., Zhang, Y., Shen, R., Zhu, Z., and Duan, N., Biochem. Eng. J., 2015, vol. 94, pp. 39–44.

    Article  CAS  Google Scholar 

  76. Wei, H., Wu, X.-S., Zou, L., Wen, G.-Y., Liu, D.-Y., and Qiao, Y., J. Power Sources, 2016, vol. 315, pp. 192–198.

    Article  CAS  Google Scholar 

  77. Zou, L., Qiao, Y., Wu, X.-S., and Li, C.M., J. Power Sources, 2016, vol. 328, pp. 143–150.

    Article  CAS  Google Scholar 

  78. Yazdi, A.A., D’Angelo, L., Omer, N., Windiasti, G., Lu, X., and Xu, J., Biosens. Bioelectron., 2016, vol. 85, pp. 536–552.

    Article  CAS  PubMed  Google Scholar 

  79. Chen, Y., Xu, Y., Chen, L., Li, P., Zhu, S., and Shen, S., Energy, 2015, vol. 88, pp. 377–384.

    Article  CAS  Google Scholar 

  80. Lawal, A.T., Mater. Res. Bull., 2016, vol. 73, pp. 308–350.

    Article  CAS  Google Scholar 

  81. Bardhan, N.M., Ghosh, D., and Belcher, A.M., Nat. Commun., 2014, vol. 5, p. 4918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sireesha, M., Babu, V.J., and Ramakrishna, S., J. Mater. Sci. Eng. B, 2017, vol. 223, pp. 43–63.

    Article  CAS  Google Scholar 

  83. Li, L., Liang, B., Shi, J., Li, F., Mascini, M., and Liu, A., Biosens. Bioelectron., 2012, vol. 33, no. 1, pp. 100–105.

    Article  CAS  PubMed  Google Scholar 

  84. Andrade, C.A.S., Nascimento, J.M., Oliveira, I.S., de Oliveira, C.V.J., de Melo, C.P., Franco, O.L., and Oliveira, M.D.L., Colloids Surf. B, 2015, vol. 135, pp. 833–839.

    Article  CAS  Google Scholar 

  85. Tarditto, L.V., Arévalo, F.J., Zon, M.A., Ovando, H.G., Vettorazzi, N.R., and Fernández, H., Microchem. J., 2016, vol. 127, pp. 220–225.

    Article  CAS  Google Scholar 

  86. Lakhin, A.V., Tarantul, V.Z., and Gening, L.V., Acta Naturae, 2013, vol. 5, no. 4 (19), pp. 37–48.

  87. Templier, V., Roux, A., Roupioz, Y., and Livache, T., TrAC, Trends Anal. Chem. (Pers. Ed.), 2016, vol. 79, pp. 71–79.

  88. Zelada-Guillén, G.A., Blondeau, P., Rius, F.X., and Riu, J., Methods, 2013, vol. 63, no. 3, pp. 233–238.

    Article  CAS  PubMed  Google Scholar 

  89. Landry, M.P., Ando, H., Chen, A.Y., Cao, J., Kottadiel, V.I., Chio, L., Yang, D., Dong, J., Lu, T.K., and Strano, M.S., Nat. Nanotechnol., 2017, vol. 12, no. 4, pp. 368–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out within the framework of the state task, state registration number of topic no. 01201353249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Maksimova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Romanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, Y.G. Microorganisms and Carbon Nanotubes: Interaction and Applications (Review). Appl Biochem Microbiol 55, 1–12 (2019). https://doi.org/10.1134/S0003683819010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819010101

Keywords:

Navigation