Applied Biochemistry and Microbiology

, Volume 55, Issue 1, pp 78–82 | Cite as

Identification of Bacteria by Surface-Enhanced Raman Spectra after Peroxide Treatment

  • D. S. Kopitsyn
  • M. V. Gorbachevskii
  • E. A. Botchkova
  • M. A. Bychenko
  • A. A. NovikovEmail author


Surface-enhanced Raman spectroscopy (SERS) is a prospective method for the detection and identification of microorganisms. Hereby we describe the method for the registration of bacterial SERS spectra, including the mild oxidation sample treatment for the additional amplification of SERS signal. We also propose the spectral data processing method for the calculation of distinguishing criteria for the bacterial spectra.


gold nanoparticles principal component analysis surface-enhanced Raman scattering identification of bacteria 



The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Tkachenko, A.G., Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 108–127.CrossRefGoogle Scholar
  2. 2.
    Pelaz, B., et al., ACS Nano, 2017, vol. 11, no. 3, pp. 2313–2381.CrossRefGoogle Scholar
  3. 3.
    Nozhevnikova, A.N., Bochkova, E.A., and Plakunov, V.K., Microbiology (Moscow), 2015, vol. 84, no. 6, pp. 731–750.CrossRefGoogle Scholar
  4. 4.
    Bodelón, G., et al., Nat. Mater., 2016, vol. 15, no. 11, pp. 1203–1211.CrossRefGoogle Scholar
  5. 5.
    Byrne, H.J., Baranska, M., Puppels, G.J., Stone, N., Wood, B., Gough, K.M., Lasch, P., Heraud, P., Sulé-Suso, J., and Sockalingum, G.D., Analyst, 2015, vol. 140, no. 7, pp. 2066–2073.CrossRefGoogle Scholar
  6. 6.
    Jarvis, R.M., Brooker, A., and Goodacre, R., Faraday Discussions, 2006, vol. 132, pp. 281–292.CrossRefGoogle Scholar
  7. 7.
    Sojinrin, T., Conde, J., Liu, K., Curtin, J., Byrne, H.J., Cui, D., and Tian, F., Anal. Bioanal. Chem., 2017, vol. 409, no. 19, pp. 4647–4658.CrossRefGoogle Scholar
  8. 8.
    Kairyte, K., Luksiene, Z., Pucetaite, M., and Sablinskas, V., Lith. J. Phys., 2012, vol. 52, no. 3, pp. 276–283.CrossRefGoogle Scholar
  9. 9.
    Kucheyev, S.O., Hayes, J.R., Biener, J., Huser, T., Talley, C.E., and Hamza, A.V., Appl. Phys. Lett., 2006, vol. 89, no. 5, p. 053102.CrossRefGoogle Scholar
  10. 10.
    Premasiri, W.R., Moir, D.T., Klempner, M.S., Krieger, N., Jones, G., and Ziegler, L.D., J. Phys. Chem. B, vol. 109, no. 1, pp. 312–320.Google Scholar
  11. 11.
    Lee, S.J., Guan, Z., Xu, H., and Moskovits, M., J. Phys. Chem., vol. 111, no. 49, pp. 17985–17988.Google Scholar
  12. 12.
    Leopold, N. and Lendl, B., J. Phys. Chem. B, vol. 107, no. 24, pp. 5723–5727.Google Scholar
  13. 13.
    Wei, G., Zhou, H., Liu, Z., and Li, Z., Appl. Surf. Sci., 2005, vol. 240, nos. 1–4, pp. 260–267.CrossRefGoogle Scholar
  14. 14.
    Cui, L., Chen, S., and Zhang, K., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, vol. 137, pp. 1061–1066.CrossRefGoogle Scholar
  15. 15.
    Hamon, C. and Liz-Marzan, L.M., J. Colloid Interface Sci., 2018, vol. 512, pp. 834–843.CrossRefGoogle Scholar
  16. 16.
    Fan, M., Andrade, G.F.S., and Brolo, A.G., Anal. Chim. Acta, 2011, vol. 693, nos. 1–2, pp. 7–25.CrossRefGoogle Scholar
  17. 17.
    Vinokurov, V.A., Kopitsyn, D.S., Kotelev, M.S., Ivanov, E.V., Lvov, Y.M., and Novikov, A.A., JOM, 2015, vol. 67, no. 12, pp. 2877–2880.CrossRefGoogle Scholar
  18. 18.
    Bastus, N.G., Comenge, J., and Puntes, V., Langmuir, 2011, vol. 27, no. 17, pp. 11098–11105.CrossRefGoogle Scholar
  19. 19.
    Gorbachevskiy, M.V., Kopitsyn, D.S., Kotelev, M.S., Ivanov, E.V., Vinokurov, V.A., and Novikov, A.A., RSC Advances, 2018, vol. 8, pp. 19051–19057.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. S. Kopitsyn
    • 1
  • M. V. Gorbachevskii
    • 1
  • E. A. Botchkova
    • 1
  • M. A. Bychenko
    • 1
  • A. A. Novikov
    • 1
    Email author
  1. 1.Gubkin UniversityMoscowRussia

Personalised recommendations