Advertisement

Applied Biochemistry and Microbiology

, Volume 55, Issue 1, pp 59–66 | Cite as

The Role of Phytohormones in the Regulation of the Tolerance of Wheat, Rye, and Triticale Seeds to the Effect of Elevated Temperatures during Germination

  • L. V. ChumikinaEmail author
  • L. I. Arabova
  • V. V. Kolpakova
  • A. F. Topunov
Article
  • 31 Downloads

Abstract

The dynamics of changes in the content of phytohormones, abscisic (ABA), and indole-3-acidic (IAA) acids at early stages of the germination of wheat, rye, and triticale (a hybrid of wheat and rye) seeds at a normal temperature (22°C) and during short heat shock (40°C) was studied. In dry wheat and triticale germs, free and conjugate indole-3-acidic and abscisic acids were present, although conjugates prevailed. The effect of elevated temperatures on germs at different stages of swelling and germination induced rapid changes in the levels of hormones. Changes in the ratio of these acids in wheat and triticale germs exposed to short heat shock were revealed. These changes may be associated with self-regulation and hormone transition to an inactive state. The dependence of growth processes on the IAA/ABA ratio during a short heat shock was indicated. The processes preceding seedling emergence and active growth were shown to differ in temperature sensitivity.

Keywords:

wheat rye triticale germination heat shock abscisic acid indole-3-acidic acid 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Kosakovskaya, I.V., Stressovye belki rastenii (Plant Stress Proteins), Kiev: Fitosotsiotsentr, 2008.Google Scholar
  2. 2.
    Popko, J., Hansch, R., Mendel, R., Polle, A., and Teichmann, T., Plant Biol., 2010, vol. 12, no. 2, pp. 242–258.CrossRefGoogle Scholar
  3. 3.
    Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., and Seo, M., Seed Sci. Res., vol. 20, no. 2, pp. 55–67.Google Scholar
  4. 4.
    Kosakovskaya, I.V. and Maidebura, E.V., Fiziol. Biokhim. Kult. Rast., 1989, vol. 21, no. 4, pp. 315–332.Google Scholar
  5. 5.
    He, Y.K., Xue, W.X., Sun, Y.D., Yu, X.H., and Liu, P.L., Cell Res., 2000, vol. 10, no. 2, pp. 151–602.CrossRefGoogle Scholar
  6. 6.
    Reed, J.W., Trends Plant Sci., 2001, vol. 6, no. 9, pp. 420–425.CrossRefGoogle Scholar
  7. 7.
    Hentrich, M., Boettcher, C., and Duchting, P., Plant J., 2013, vol. 74, no. 4, pp. 626–637.CrossRefGoogle Scholar
  8. 8.
    Liu, P.P., Montgomery, T.A., Fahlgren, N., Kasschau, K.D., Nonogaki, H., and Carrington, J.C., Plant J., 2007, vol. 52, no. 1, pp. 133–146.CrossRefGoogle Scholar
  9. 9.
    Liu, X., Yue, Y., Li, B., Nie, Y., Li, W., Wu, W.H., and Ma, L., Science, 2007, vol. 315, no. 5819, pp. 1712–1716.CrossRefGoogle Scholar
  10. 10.
    Hansen, H. and Grossmann, K., Plant Physiol., 2000, vol. 124, no. 3, pp. 1437–1448.CrossRefGoogle Scholar
  11. 11.
    Shu, K., Liu, X.D., Xie, Q., and He, Z.H., Mol. Plant, 2016, vol. 9, no. 1, pp. 34–45.CrossRefGoogle Scholar
  12. 12.
    Cohen, J.D. and Bandurski, R.S., Annu. Rev. Plant. Physiol., 1982, vol. 33, pp. 403–430.CrossRefGoogle Scholar
  13. 13.
    Bialek, K., Michalczuk, L., and Cohen, J.D., Plant Physiol., 1992, vol. 100, no. 1, pp. 509–517.CrossRefGoogle Scholar
  14. 14.
    Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., Huang, J., Nie, L., and Peng, S., Sci. Rep., 2016, vol. 6, article ID e34978. doi  https://doi.org/10.1038/srep34978 CrossRefGoogle Scholar
  15. 15.
    Chumikina, L.V., Arabova, L.I., and Kolpakova, V.V., Vestn. Ross. Akad. S.-kh. Nauk, 2002, no. 2, pp. 30–35.Google Scholar
  16. 16.
    Chumikina, L.V., Arabova, L.I., and Topunov, A.F., Izv. VUZov. Pishch. Tekhnol., 2009, no. 1, pp. 9–13.Google Scholar
  17. 17.
    Arabova, L.I., Chumikina, L.V., and Topunov, A.F., Vestn. Michur. Gos. Agrar. Univ., 2011, no. 2, pt. 2, pp. 82–88.Google Scholar
  18. 18.
    Khoreva, V.I., Byull. Vses. Inst. Rast., 1978, no. 78, pp. 18–21.Google Scholar
  19. 19.
    Bialek, K. and Cohen, J.D., Plant Physiol., 1989, vol. 91, no. 1, pp. 398–400.CrossRefGoogle Scholar
  20. 20.
    Ljung, K., Ostin, A., Lioussanne, L., and Sandberg, G., Plant Physiol., 2001, vol. 125, no. 1, pp. 464–475.CrossRefGoogle Scholar
  21. 21.
    Kudoyarova, G.R., Veselov, S.Yu., and Usmanov, I.Yu., Zh. Obshch. Biol., 1999, no. 6, pp. 649–658.Google Scholar
  22. 22.
    Veselov, A.P., Lobov, V.P., and Olyunina, L.N., Fiziol. Rast., 1998, vol. 45, no. 5, pp. 709–715.Google Scholar
  23. 23.
    Talanova, V.V., Kudoyarova, G.R., and Titov, A.F., Fiziol. Biokhim. Kult. Rast., 1990, vol. 22, no. 2, pp. 153–157.Google Scholar
  24. 24.
    Romagosa, I., J. Exp. Bot., 2001, vol. 52, no. 360, pp. 1499–1506.CrossRefGoogle Scholar
  25. 25.
    Bewley, J.D. and Black, M., Seeds: Physiology of Development and Germination, New York: Plenum Press, 1994.CrossRefGoogle Scholar
  26. 26.
    Perino, C. and Côme, D., Seed Sci. Technol., 1991, vol. 19, no. 1, pp. 1–14.Google Scholar
  27. 27.
    Demir, I. and Van De Venter, H.A., Exp. Agric., 2000, vol. 36, pp. 453–458.Google Scholar
  28. 28.
    Walker-Simmons, M., Plant, Cell Environ., 1988, vol. 11, no. 8, pp. 769–775.CrossRefGoogle Scholar
  29. 29.
    Gumilevskaya, N.A., Chumikina, L.V., Arabova, L.I., Zimin, M.V., and Shatilov, V.R., Fiziol. Rast., 1996, vol. 43, no. 2, pp. 247–255.Google Scholar
  30. 30.
    Gumilevskaya, N.A., Arabova, L.I., Chumikina, L.V., and Shatilov, V.R., Fiziol. Rast., 1997, vol. 44, no. 5, pp. 690–698.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • L. V. Chumikina
    • 1
    Email author
  • L. I. Arabova
    • 1
  • V. V. Kolpakova
    • 2
  • A. F. Topunov
    • 1
  1. 1.Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia
  2. 2.All-Russia Research Institute of Starch ProductsKraskovoRussia

Personalised recommendations