Advertisement

Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 250–257 | Cite as

Characterization of bacterial communities in anode microbial fuel cells fed with glucose, propyl alcohol and methanol

  • S. H. Zhang
  • C. H. Qiu
  • C. F. Fang
  • Q. L. Ge
  • Y. X. Hui
  • B. Han
  • S. Pang
Article

Abstract

Bacterial communities in anode microbial fuel cells (MFC) obtained from anaerobic digester sludge in a municipal wastewater treatment plant (Nanjing, China) were investigated. Glucose, propyl alcohol and methanol were used as sole carbon source in two-chamber MFC. The results showed that a reproducible cycle of power production can be formed in MFC fed with 3 substrates and glucose-fed MFC had the highest peak power density of 1499 ± 33 mW/m3, followed by methanol- (1264 ± 47 mW/m3) and propyl alcohol-fed MFC (1192 ± 36 mW/m3). Firmicutes, Bacteroidetes, Verrucomicrobia, Proteobacteria, Synergistetes and Armatimonadetes were dominant phyla in 3 MFC. Firmicutes was the most dominant phylum in glucose-fed MFC samples and Bacteroidetes prevailed in methanol- and propyl alcohol-fed MFC. These data indicate that propyl alcohol and methanol along with glucose can be used as substrates of MFC.

Keywords

microbial fuel cells substrates anode glucose propyl alcohol methanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chabert, N., Ali, O., and Achouak, W., Bioelectrochemistry, 2015, vol. 106, pt. A, pp. 88–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Pant, D., van Bogaert, G., Diels, L., and Vanbroekhoven, K., Biores. Technol., 2010, vol. 101, no. 6, pp. 1533–1543.CrossRefGoogle Scholar
  3. 3.
    Logan, B.E., Microbial Fuel Cells, Logan, B.E., Ed., 1st edition, New York Wiley-Interscience, 2008.Google Scholar
  4. 4.
    Logan, B.E. and Regan, J.M., Trends Microbiol., 2006, vol. 14, no. 12, pp. 512–518.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhi, W., Ge, Z., He, Z., and Zhang, H., Biores. Technol., 2014, vol. 171, pp. 461–468.CrossRefGoogle Scholar
  6. 6.
    Phung, N.T., Lee, J., Kang, K.H., Chang, I.S., Gadd, G.M., and Kim, B.H., FEMS Microbiol. Lett., 2004, vol. 233, no. 1, pp. 77–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Montpart, N., Ribot-Llobet, E., Kumar Garlapati, V., Rago, L., Baeza, J.A., and Guisasola, A., Int. J. Hydrogen Energ., 2014, vol. 39, no. 2, pp. 770–777.CrossRefGoogle Scholar
  8. 8.
    Kim, J.R., Jung, S.H., Regan, J.M., and Logan, B.E., Biores. Technol., 2007, vol. 98, no. 13, pp. 2568–2577.CrossRefGoogle Scholar
  9. 9.
    Ammar, E.M., Wang, Z., and Yang, S.-T., Appl. Microbiol. Biot., 2013, vol. 97, no. 10, pp. 4677–4690.CrossRefGoogle Scholar
  10. 10.
    Chae, K.-J., Choi, M.-J., Lee, J.-W., Kim, K.-Y., and Kim, I.S., Biores. Technol., 2009, vol. 100, no. 14, pp. 3518–3525.CrossRefGoogle Scholar
  11. 11.
    Sun, G., Thygesen, A., and Meyer, A., Appl. Microbiol. Biot., 2015, vol. 99, no. 11, pp. 4905–4915.CrossRefGoogle Scholar
  12. 12.
    Mori, H., Maruyama, F., Kato, H., Toyoda, A., Dozono, A., Ohtsubo, Y., et al., DNA Res., 2014, vol. 21, no. 2, pp. 217–227.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, Y., Min, B., Huang, L., and Angelidaki, I., Biores. Technol., 2011, vol. 102, no. 2, pp. 1166–1173.CrossRefGoogle Scholar
  14. 14.
    Chang, I.S., Moon, H., Bretschger, O., Jang, J.K., Park, H.I., Nealson, K.H., and Kim, B.H., J. Microbiol. Biotechnol., 2006, vol. 16, no. 2, pp. 163–177.Google Scholar
  15. 15.
    Jung, S. and Regan, J.M., Appl. Microbiol. Biotechnol., 2007, vol. 77, no. 2, pp. 393–402.CrossRefPubMedGoogle Scholar
  16. 16.
    Song, Y., Xiao, L., Jayamani, I., He, Z., and Cupples, A.M., J. Microbiol. Meth., 2015, vol. 108, pp. 4–11.CrossRefGoogle Scholar
  17. 17.
    Zhang, T., Shao, M.-F., and Ye, L., ISME J., 2012, vol. 6, no. 6, pp. 1137–1147.Google Scholar
  18. 18.
    Lesnik, K.L. and Liu, H., Appl. Microbiol. Biot., 2014, vol. 98, no. 9, pp. 4187–4196.CrossRefGoogle Scholar
  19. 19.
    Choo, Y.F., Lee, J., Chang, I.S., and Kim, B.H., J. Microbiol. Biotech., 2006, vol. 16, no. 9, pp. 1481.Google Scholar
  20. 20.
    Alatraktchi, F.A., Zhang, Y., and Angelidaki, I., Applied Energ., 2014, vol. 116, pp. 216–222.CrossRefGoogle Scholar
  21. 21.
    Rimboud, M., Desmond-Le Quemener, E., Erable, B., Bouchez, T., and Bergel, A., Bioelectrochemistry, 2015, vol. 102, pp. 42–49.CrossRefPubMedGoogle Scholar
  22. 22.
    Kalyuzhnaya, M.G., Beck, D.A.C., Vorobev, A., Smalley, N., Kunkel, D.D., Lidstrom, M.E., and Chistoserdova, L., Int. J. Syst. Evol. Micr., 2012, vol. 62, no. 1, pp. 106–111.CrossRefGoogle Scholar
  23. 23.
    Yang, Q., Xiong, P., Ding, P., Chu, L., and Wang, J., Biores. Technol., 2015, vol. 196, no. 4, pp. 169–175.CrossRefGoogle Scholar
  24. 24.
    Zhang, J., Zhang, Y., Quan, X., and Chen, S., Water Res., 2013, vol. 47, no. 15, pp. 5719–5728.CrossRefPubMedGoogle Scholar
  25. 25.
    Watanabe, K., Miyahara, M., Shimoyama, T., and Hashimoto, K., Appl. Microbiol. Biot., 2011, vol. 92, no. 6, pp. 1307–1314.CrossRefGoogle Scholar
  26. 26.
    Rabaey, K. and Verstraete, W., Trends Microbiol., 2005, vol. 23, no. 6, pp. 291–298.Google Scholar
  27. 27.
    Xiao, B., Han, Y., Liu, X., and Liu, J., Int. J. Hydrogen Energ., 2014, vol. 39, no. 29, pp. 16419–16425.CrossRefGoogle Scholar
  28. 28.
    Ishii, S.i., Suzuki, S., Norden-Krichmar, T.M., Tenney, A., Chain, P.S.G., Scholz, M.B., et al. Nat. Commun., 2013, vol. 4, no. 3, pp. 67–88.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. H. Zhang
    • 1
  • C. H. Qiu
    • 1
  • C. F. Fang
    • 2
  • Q. L. Ge
    • 2
  • Y. X. Hui
    • 1
  • B. Han
    • 1
  • S. Pang
    • 1
  1. 1.Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of EnvironmentHohai UniversityNanjingChina
  2. 2.Lishui Water Group CO., LTDNanjingChina

Personalised recommendations