Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 222–229 | Cite as

Discoloration of the azo dye Congo Red by manganese-dependent peroxidase from Pleurotus sajor caju

Article
  • 61 Downloads

Abstract

This paper describes the production of ligninolytic enzymes by the white-rot fungus Pleurotus sajor caju under solid-state fermentation conditions using a cost-effective medium consisting of agro-industrial wastes. From the different agro-industrial wastes tested (i.e. orange, banana, mango and cantaloupe peels), banana peels led to the highest manganese-dependent peroxidase (MnP) activity (6.3 U/mL on the 10 day). MnP from banana peel cultures was purified and applied to the discoloration of the azo dye Congo Red (CR). The optimum temperature, pH and enzyme concentration for maximum discoloration (i.e. 95% in 1 h) were found to be 35°C, 4.0, and 1.4 U/mL, respectively. In addition, the phytotoxicity (with respect to Sorghum vulgare and Phaseolus radiatus seeds) of CR was considerably reduced after the treatment of plant material with MnP produced by P. sajor caju. The products obtained after discoloration of CR were characterized using GC/MS as 8-amino naphthol 3-sulfonic acid, 3-hydroperoxy 8-nitrosonaphthol, p-p'-dihydroxybiphenyl. Therefore, this approach holds promise for the production and application of MnP from P. sajor caju on a larger scale.

Keywords

discoloration manganese-dependent peroxidase phytotoxicity solid-state fermentation Pleurotus sajor caju 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rauf, M.A. and Ashraf, S.S., Chem. Eng. J., 2009, vol. 151, no. 1, pp. 10–18.CrossRefGoogle Scholar
  2. 2.
    Merabet, S., Bouzaza, A., and Wolbert, D., J. Hazard Mater., 2009, vol. 166, nos. 2–3, pp. 1244–1249.CrossRefPubMedGoogle Scholar
  3. 3.
    Microbial Degradation of Xenobiotics, Singh, S.N., Ed., Berlin: Springer, 2012, pp. 101–133.Google Scholar
  4. 4.
    Hamedaani, H.R., Sakurai, A., and Sakakibara, M., Dyes Pigments, 2007, vol. 72, no. 2, pp. 157–162.CrossRefGoogle Scholar
  5. 5.
    Wong, Y. and Yu, J., Water Res., 1999, vol. 33, no. 16, pp. 3512–3520.CrossRefGoogle Scholar
  6. 6.
    Yang, X.Q., Zhao, X.X., Liu, C.Y., Zheng, Y.S., and Qian, J., Process Biochem., 2009, vol. 44, no. 10, pp. 1185–1189.CrossRefGoogle Scholar
  7. 7.
    Ertugrul, S., Bakr, M., and Donmez, G., Ecol. Eng., 2008, vol. 32, no. 3, pp. 244–248.CrossRefGoogle Scholar
  8. 8.
    Binupriya, A.R., Sathishkumar, M., Swaminathan, K., Ku, C.S., and Yun, S.E., Bioresour. Technol., 2008, vol. 99, no. 5, pp. 1080–1088.CrossRefPubMedGoogle Scholar
  9. 9.
    Banat, I.M., Nigam, P., Singh, D., and Marchant, R., Bioresour. Technol., 1996, vol. 58, no. 3, pp. 217–227.CrossRefGoogle Scholar
  10. 10.
    Fu, Y. and Viraraghavan, T., Bioresour. Technol., 2001, vol. 79, no. 3, pp. 251–262.CrossRefPubMedGoogle Scholar
  11. 11.
    Takano, M., Nakamura, M., and Yamaguchi, M., J. Wood Sci., 2010, vol. 56, no. 4, pp. 307–313.CrossRefGoogle Scholar
  12. 12.
    Pandey, A., Biochem. Eng. J., 2003, vol. 13, no. 2, pp. 81–84.CrossRefGoogle Scholar
  13. 13.
    Pandey, A., Soccol, C.R., Nigam, P., and Soccol, V.T., Bioresour. Technol., 2000, vol. 74, no. 1, pp. 69–80.CrossRefGoogle Scholar
  14. 14.
    Pappu, A., Saxena, M., and Asolekar, S.R., Building Environ., 2007, vol. 42, no. 6, pp. 2311–2320.CrossRefGoogle Scholar
  15. 15.
    Kalogeris, E., Iniotaki, F., Topakas, E., Christakopoulos, P., Kekos, D., and Macris, B.J., Bioresour. Technol., 2003, vol. 86, no. 3, pp. 207–213.CrossRefPubMedGoogle Scholar
  16. 16.
    Stredansky, M. and Conti, E., Process Biochem., 1999, vol. 34, nos. 6–7, pp. 581–587.CrossRefGoogle Scholar
  17. 17.
    Gold, M.H. and Glenn, J.K., Meth. Enzymol., 1988, vol. 161, pp. 258–264.CrossRefGoogle Scholar
  18. 18.
    Eggert, C., Temp, U., and Eriksson, L., Appl. Environ. Microbiol., 1996, vol. 62, no. 4, pp. 1151–1158.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tien, M. and Kirk, T.K., Proc. Natl. Acad. Sci. U. S. A., 1984, vol. 81, no. 8, pp. 2280–2284.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Oakley, B.R., Anal. Chem., 1980, vol. 105, no. 2, pp. 361–363.Google Scholar
  21. 21.
    Davis, B.J., Ann. N.Y. Acad. Sci., 1964, vol. 121, no. 2, pp. 404–427.CrossRefPubMedGoogle Scholar
  22. 22.
    Singleton, V.L., Orthofer, R., and Lamuela-Raventos, R.M., Meth. Enzymol., 1999, vol. 299, pp. 152–178.CrossRefGoogle Scholar
  23. 23.
    Composting of Agricultural and Other Wastes, Commission European Communities, Gasser, J.K.R., Ed., London: Elsevier, 1985, pp. 73–86.Google Scholar
  24. 24.
    USEPA, Ecological Effects Test Guidelines: OPPTS 850.4200. Seed Germination/root Elongation Toxicity Test. Prevention, Pesticides and Toxic Substances, 1996.Google Scholar
  25. 25.
    Osma, J.F., Toca Herrera, J.L., and Couto, S.R., Dyes Pigments, 2007, vol. 75, no. 1, pp. 32–37.CrossRefGoogle Scholar
  26. 26.
    Essien, J.P., Akpan, E.J., and Essien, E.P., Bioresour. Technol., 2005, vol. 96, no. 13, pp. 1451–1456.CrossRefPubMedGoogle Scholar
  27. 27.
    Hofrichter, M., Vares, T., Kalsi, M., Scheibner, K., and Hatakka, A., Appl. Environ. Microbiol., 1999, vol. 65, no. 5, pp. 1864–1870.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Yao, J., Jia, R., Zheng, L., and Wang, B., Biotechnol. Bioproc. E, 2013, vol. 18, no. 5, pp. 868–877.CrossRefGoogle Scholar
  29. 29.
    Asgher, M., Azim, N., and Bhatti, H.N., Biochem. Eng. J., 2009, vol. 47, no. 1, pp. 61–65.CrossRefGoogle Scholar
  30. 30.
    Asgher, M., Bhatti, H.N., Shah, S.A.H., Asad, M.J., and Legge, R.L., Biodegradation, 2007, vol. 18, no. 3, pp. 311–316.CrossRefPubMedGoogle Scholar
  31. 31.
    Telke, A.A., Joshi, S.M., Jadhav, S.U., Tamboli, D.P., and Govindwar, S.P., Biodegradation, 2010, vol. 21, no. 2, pp. 283–296.CrossRefPubMedGoogle Scholar
  32. 32.
    Babu, S.S., Mohandass, C., Vijayaraj, A.S., and Dhale, M.A., Ecotoxicol. Environ. Safety, 2015, vol. 114, no. 1, pp. 52–60.CrossRefGoogle Scholar
  33. 33.
    Kalyani, D.C., Telke, A.A., Dhanve, R., and Jadhav, J.P., J. Hazard Mater., 2009, vol. 163, no. 2, pp. 735–742.CrossRefPubMedGoogle Scholar
  34. 34.
    Huang, Y.C., Hung, W.C., Chye, S.M., Chen, W.T., and Chai, C.Y., Toxicol. in Vitro, 2011, vol. 25, no. 8, pp. 1630–1637.CrossRefPubMedGoogle Scholar
  35. 35.
    Chivukula, M. and Renganathan, V., Appl. Environ. Microbiol., 1995, vol. 61, no. 12, pp. 4374–4377.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of Botany and Microbiology, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.CEIT-IK4Unit of Environmental EngineeringSan SebastianSpain
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations