Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 157–164 | Cite as

Peroxidase activity of octaheme nitrite reductases from bacteria of the Thioalkalivibrio genus

  • T. V. Tikhonova
  • E. S. Slutskaya
  • V. O. Popov


Closely related penta- and octaheme nitrite reductases catalyze the reduction of nitrite, nitric oxide, and hydroxylamine to ammonium and of sulfite to sulfide. NrfA pentaheme nitrite reductase plays the key role in anaerobic nitrate respiration and the protection of bacterial cells from stresses caused by nitrogen oxides and hydrogen peroxide. Octaheme nitrite reductases from bacteria of the Thioalkalivibrio genus are less studied, and their function in the cell is unknown. In order to estimate the possible role of octaheme nitrite reductases in the cell resistance to oxidative stress, the peroxidase activity of the enzyme from T. nitratireducens (TvNiR) has been studied in detail. Comparative analysis of the active site structure of TvNiR and cytochrome c peroxidases has shown some common features, such as a five-coordinated catalytic heme and identical catalytic residues in active sites. A model of the possible productive binding of peroxide at the active site of TvNiR has been proposed. The peroxidase activity has been measured for TvNiR hexamers and trimers under different conditions (pH, buffers, the addition of CaCl2 and EDTA). The maximum peroxidase activity of TvNiR with ABTS as a substrate (k cat = 17 s–1; k cat/K m = 855 mM–1 s–1) has been 100–300 times lower than the activity of natural peroxidases. The different activities of TvNiR trimers and hexamers indicate that the rate-limiting stage of the reaction is not the catalytic event at the active site but the electron transfer along the heme c electron-transport chain.


octaheme nitrite reductase peroxidase activity oxidative stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simon, J., FEMS Microbiol. Rev., 2002, vol. 26, pp. 285–309.CrossRefPubMedGoogle Scholar
  2. 2.
    Einsle, O., Methods. Enzymol., 2011, vol. 496, pp. 399–422.CrossRefPubMedGoogle Scholar
  3. 3.
    Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G.P., Bartunik, H.D., Huber, R., and Kroneck, P.M.H., Nature, 1999, vol. 400, no. 6743, pp. 476–480.CrossRefPubMedGoogle Scholar
  4. 4.
    Clarke, T.A., Mills, P.C., Poock, S.R., Butt, J.N., Cheesman, M.R., Cole, J.A., Hinton, J.C., Hemmings, A.M., Kemp, G., Soderberg, C.A., Spiro, S., van Wonderen, J., and Richardson, D.J., Methods Enzymol., 2008, vol. 437, pp. 63–77.CrossRefPubMedGoogle Scholar
  5. 5.
    Tikhonova, T., Tikhonov, A., Trofimov, A., Polyakov, K., Boyko, K., Cherkashin, E., Rakitina, T., Sorokin, D., and Popov, V., FEBS J., 2012, vol. 279, no. 21, pp. 4052–4061.Google Scholar
  6. 6.
    Tikhonova, T.V., Trofimov, A.A., and Popov, V.O., Biochemistry (Moscow), 2012, vol. 77, no. 10, pp. 1129–1138.CrossRefGoogle Scholar
  7. 7.
    Einsle, O., Stach, P., Messerschmidt, A., Simon, J., Kroger, A., Huber, R., and Kroneck, P.M.H., J. Biol. Chem., 2000, vol. 275, pp. 39608–39616.CrossRefPubMedGoogle Scholar
  8. 8.
    Bamford, V.A., Angove, H.C., Seward, H.E., Thomson, A.J., Cole, J.A., Butt, J.N., Hemmings, A.M., and Richardson, D.J., Biochemistry, 2002, vol. 41, pp. 2921–2931.CrossRefPubMedGoogle Scholar
  9. 9.
    Lockwood, C.W., Burlat, B., Cheesman, M.R., Kern, M., Simon, J., Clarke, T.A., Richardson, D.J., and Butt, J.N., J. Am. Chem. Soc., 2015, vol. 137, no. 8, pp. 3059–3068.CrossRefPubMedGoogle Scholar
  10. 10.
    Cunha, C.A., Macieira, S., Dias, J.M., Almeida, G., Goncalves, L.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J.G., Moura, I., and Romao, M.J., J. Biol. Chem., 2003, vol. 278, pp. 17455–17465.CrossRefPubMedGoogle Scholar
  11. 11.
    Rodrigues, M.L., Oliveira, T.F., Pereira, I.A.C., and Archer, M., EMBO J., 2006, vol. 25, pp. 5951–5960.Google Scholar
  12. 12.
    Youngblut, M., Judd, E.T., Srajer, V., Sayyed, B., Goelzer, T., Elliott, S.J., Schmidt, M., and Pacheco, A.A., J. Biol. Inorg. Chem., 2012, vol. 17, pp. 647–662.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kemp, G.L., Clarke, T.A., Marritt, S.J., Lockwood, C., Poock, S.R., Hemmings, A.M., Richardson, D.J., Cheesman, M.R., and Butt, J.N., Biochem. J., 2010, vol. 431, no. 1, pp. 73–80.CrossRefPubMedGoogle Scholar
  14. 14.
    van Wonderen, J.H., Burlat, B., Richardson, D.J., Cheesman, M.R., and Butt, J.N., J. Biol. Chem., 2008, vol. 283, no. 15, pp. 9587–9594.CrossRefPubMedGoogle Scholar
  15. 15.
    Angove, H.C., Cole, J.A., Richardson, D.J., and Butt, J.N., J. Biol. Chem., 2002, vol. 277, pp. 23374–23381.CrossRefPubMedGoogle Scholar
  16. 16.
    Lukat, P., Rudolf, M., Stach, P., Messerschmidt, A., Kroneck, P.M., Simon, J., and Einsle, O., Biochemistry, 2008, vol. 47, no. 7, pp. 2080–2086.CrossRefPubMedGoogle Scholar
  17. 17.
    Rudolf, M., Einsle, O., Neese, F., and Kroneck, P.M., Biochem. Soc. Trans., 2002, vol. 30, no. 4, pp. 649–653.CrossRefPubMedGoogle Scholar
  18. 18.
    Kern, M., Volz, J., and Simon, J., Environ. Microbiol., 2011, vol. 13, no. 9, pp. 2478–2494.CrossRefPubMedGoogle Scholar
  19. 19.
    Muhlig, A., Kabisch, J., Pichner, R., Scherer, S., and Muller-Herbst, S., Food Microbiol., 2014, vol. 42, pp. 26–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Pittman, M.S., Elvers, K.T., Lee, L., Jones, M.A., Poole, R.K., Park, S.F., and Kelly, D.J., Mol. Microbiol., 2007, vol. 63, pp. 575–590.CrossRefPubMedGoogle Scholar
  21. 21.
    Tikhonova, T.V., Slutsky, A., Antipov, A.N., Boyko, K.M., Polyakov, K.M., Sorokin, D.Y., Zvyagilskaya, R.A., and Popov, V.O., Biochim. Biophys. Acta, 2006, vol. 1764, pp. 715–723.CrossRefPubMedGoogle Scholar
  22. 22.
    Polyakov, K.M., Boyko, KM., Tikhonova, T.V., Slutsky, A., Antipov, A.N., Zvyagilskaya, R.A., Popov, A.N., Bourenkov, G.P., Lamzin, V.S., and Popov, V.O., J. Mol. Biol., 2009, vol. 389, pp. 846–862.CrossRefPubMedGoogle Scholar
  23. 23.
    Sorokin, D.Y., Tourova, T.P., Sjollema, K.A., and Kuenen, J.G., Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1779–1783.CrossRefPubMedGoogle Scholar
  24. 24.
    Sorokin, D.Y., Antipov, A.N., and Kuenen, J.G., Arch. Microbiol., 2003, vol. 180, pp. 127–133.CrossRefPubMedGoogle Scholar
  25. 25.
    Sorokin, D.Y., Tourova, T.P., Lysenko, A.M., Mityushina, L.L., and Kuenen, J.G., Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 657–664.CrossRefPubMedGoogle Scholar
  26. 26.
    Tikhonova, T.V., Slutskaya, E.S., Filimonenkov, A.A., Boiko, K.M., Kleimenov, S.Yu., Konarev, P.V., Polyakov, K.M., Svergun, D.I., Trofimov, A.A., Khomenkov, V.G., Zvyagil’skaya, R.A., and Popov, V.O., Biochemistry (Moscow), 2008, vol. 73, no. 2, pp. 164–170.CrossRefGoogle Scholar
  27. 27.
    Yamada, S., Suruga, K., Ogawa, M., Hama, T., Satoh, T., Kawachi, R., Nishio, T., and Oku, T., Biosci. Biotechnol. Biochem., 2002, vol. 66, no. 10, pp. 2044–2051.CrossRefPubMedGoogle Scholar
  28. 28.
    Prasad, S., Maiti, N.C., Mazumdar, S., and Mitra, S., Biochim. Biophys. Acta, 2002, vol. 1596, pp. 63–75.CrossRefPubMedGoogle Scholar
  29. 29.
    Suruga, K., Murakami, K., Taniyama, Y., Hama, T., Chida, H., Satoh, T., Yamada, S., Hakamata, W., Kawachi, R., Isogai, Y., Nishio, T., and Oku, T., Biochem. Biophys. Res. Commun., 2004, vol. 315, no. 4, pp. 815–822.CrossRefPubMedGoogle Scholar
  30. 30.
    Poulos, T.L., Freer, S.T., Alden, R.A., Edwards, S.L., Skogland, U., Takio, K., Eriksson, B., Xuong, N., Yonetani, T., and Kraut, J., J. Biol. Chem., 1980, vol. 255, no. 2, pp. 575–580.PubMedGoogle Scholar
  31. 31.
    Poulos, T.L., Curr. Opin. Biotechnol, 1993, vol. 4, no. 4, pp. 484–489.CrossRefPubMedGoogle Scholar
  32. 32.
    Choudhury, K., Sundaramoorthy, M., Hickman, A., Yonetani, T., Woehl, E., Dunn, M.F., and Poulos, T.L., J. Biol. Chem., 1994, vol. 269, no. 32, pp. 20239–20249.PubMedGoogle Scholar
  33. 33.
    Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y., and Amachi, T., J. Mol. Biol., 1994, vol. 235, no. 1, pp. 331–344.CrossRefPubMedGoogle Scholar
  34. 34.
    Schuller, D.J., Ban, N., Huystee, R.B., McPherson, A., and Poulos, T.L., Structure, 1996, vol. 4, pp. 311–321.CrossRefPubMedGoogle Scholar
  35. 35.
    Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T., and Poulos, T.L., Nat. Struct. Biol., 1997, vol. 4, pp. 1032–1038.CrossRefPubMedGoogle Scholar
  36. 36.
    Erman, J.E. and Vitello, L.B., Biochim. Biophys. Acta, 2002, vol. 1597, pp. 193–220.CrossRefPubMedGoogle Scholar
  37. 37.
    Finzel, B.C., Poulos, T.L., and Kraut, J., J. Biol. Chem., 1984, vol. 259, pp. 13027–13036.PubMedGoogle Scholar
  38. 38.
    Gazaryan, I.G., Khushpul’yan, D.M., and Tishkov, V.I., Usp. Biol. Khim., 2006, vol. 46, pp. 303–322.Google Scholar
  39. 39.
    Trofimov, A.A., Polyakov, K.M., Boiko, K.M., Filimonenkov, A.A., Dorovatovskii, P.V., Tikhonova, T.V., Popov, V.O., and Koval’chuk, M.V., Kristallografiya, 2010, vol. 55, no. 10, pp. 1176–1182.Google Scholar
  40. 40.
    Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P.M., and Neese, F., J. Am. Chem. Soc., 2002, vol. 124, no. 39, pp. 11737–11745.CrossRefPubMedGoogle Scholar
  41. 41.
    Kamal, J.K. and Behere, D.V., J. Inorg. Biochem., 2003, vol. 94, no. 3, pp. 236–242.CrossRefPubMedGoogle Scholar
  42. 42.
    Radi, R., Thomson, L., Rubbo, H., and Prodanov, E., Arch. Biochem. Biophys., 1991, vol. 288, pp. 112–117.CrossRefPubMedGoogle Scholar
  43. 43.
    Sakharov, I.Y., Biochemistry (Moscow), 2001, vol. 66, no. 1, pp. 515–519.CrossRefGoogle Scholar
  44. 44.
    Chen, Y., Lykourinou, V., Hoang, T., Ming, L.-J., and Ma, S., Inorg. Chem., 2012, vol. 51, pp. 12600–12602.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • T. V. Tikhonova
    • 1
  • E. S. Slutskaya
    • 1
  • V. O. Popov
    • 1
  1. 1.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations