Skip to main content
Log in

Content of salicylic and jasmonic acids in pea roots (Pisum sativum L.) at the initial stage of symbiotic or pathogenic interaction with bacteria of the family Rhizobiaceae

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A change in the contents of endogenous salicylic and jasmonic acids in the roots of the host plant at the preinfectious stage of interaction with symbiotic (Rhizobium leguminosarum) and pathogenic (Agrobacterium rizogenes) bacteria belonging for to the family Rhizobiaceae was studied. It was found that the jasmonic acid content increased 1.5–2 times 5 min after inoculation with these bacterial species. It was shown that dynamics of the change in the JA and SA contents depends on the type of infection. Thus, the JA content decreased in the case of pathogenesis, while the SA content increased. At the same time, an increased JA content was observed during symbiosis. The observed regularities could indicate the presence of different strategies of hormonal regulation for interaction with symbiotic and pathogenic bacteria belonging to the family Rhizobiaceae in peas plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pieterse, C.M., van der Does, D., Zamioudis, C., Leon-Reyes, A., and van Wees, S.C., Annu. Rev. Cell Dev., 2012, vol. 28, pp. 489–521.

    Article  CAS  Google Scholar 

  2. Ferguson, B.J. and Mathesius, U., J. Chem. Ecol., 2014, vol. 40, no. 7, pp. 770–790.

    Article  CAS  PubMed  Google Scholar 

  3. McDowell, J.M. and Dangl, J.L., Trends Biochem. Sci., 2000, vol. 25, no. 2, pp. 79–82.

    Article  CAS  PubMed  Google Scholar 

  4. Glazebrook, J., Annu. Rev. Phytopathol., 2005, vol. 43, pp. 205–227.

    Article  CAS  PubMed  Google Scholar 

  5. Soto, M.J., Sanjuan, J., and Olivares, J., Microbiology, 2006, vol. 152, no. 11, pp. 3167–3174.

    Article  CAS  PubMed  Google Scholar 

  6. Buffard, D., Esnault, R., and Kondorosi, A., J. Microbiol. Biotechnol., 1996, vol. 12, no. 2, pp. 175–188.

    Article  CAS  Google Scholar 

  7. Vasse, J., De Billy, F., and Truchet, J., Plant J., 1993, vol. 4, no. 3, pp. 555–566.

  8. Zamioudis, C. and Pieterse, C.M., Mol. Plant–Microbe Interact., 2012, vol. 25, no. 2, pp. 139–150.

    Article  CAS  PubMed  Google Scholar 

  9. Koorneef, A., Verhage, A., Leon-Reyes, A., Snetselaar, R., van Loon, L.C., and Pietrse, C.M., Plant Signal. Behav., 2008, vol. 3, no. 8, pp. 543–546.

    Article  Google Scholar 

  10. Mattis, E. and Kain, Ya., in Rhizobiaceae, St. Petersburg: Rossel’khozakademiya, 2002, pp. 179–198.

    Google Scholar 

  11. Rudikovskaya, E.G., Akimova, G.P., Fedorova, G.A., Sokolova, M.G., Dudareva, L.V., and Rudikovskii, A.V., Russ. J. Plant Physiol., 2010, vol. 57, no. 2, pp. 253–259.

    Article  CAS  Google Scholar 

  12. Berestetskii, V.A., Metodicheskie rekomendatsii po polucheniyu novykh shtammov Rhizobium leguminosarum i otsenki ikh effektivnosti (Guidelines for Obtaining New Strains of Rhizobium leguminosarum and Assessment of Their Efficiency), Leningrad VNIISKhM, 1976.

    Google Scholar 

  13. Glyan’ko, A.K., Appl. Biochem. Microbiol., 2015, vol. 51, no. 5, pp. 494–504.

    Article  Google Scholar 

  14. Durrant, W.E. and Dong, X., Annu. Rev. Phytopathol., 2004, vol. 42, pp. 185–209.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Abarca, F., Herrera-Cervera, J.A., Bueno, P., Sanjuan, J., Bisseling, T., and Olivares, J., Mol. Plant–Microbe Interact., 1998, vol. 11, no. 2, pp. 153–155.

    Article  CAS  Google Scholar 

  16. van Spronsen, P.C., Tak, T., Rood, A.M.M., van Brussel, A.A., Kijne, J.W., and Boot, K.J.M., Mol. Plant–Microbe Interact., 2003, vol. 16, no. 1, pp. 83–91.

    Article  PubMed  Google Scholar 

  17. Sato, T., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi, T., Sato, A., and Ohyama, T., Soil Sci. Plant Nutr., 2002, vol. 48, no. 2, pp. 413–420.

    Article  CAS  Google Scholar 

  18. Blilou, I., Ocampo, J.A., and Garcia-Garrido, J.M., J. Exp. Bot., 1999, vol. 50, no. 340, pp. 1663–1668.

    Article  CAS  Google Scholar 

  19. Stacey, G., McAlvin, C.B., Kim, S.Y., Olivares, J., and Soto, M.J., Plant Physiol., 2006, vol. 141, no. 4, pp. 1473–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mabood, F. and Smith, D.L., Physiol. Plant., 2005, vol. 125, no. 2, pp. p. 311–323.

    Article  CAS  Google Scholar 

  21. Poustini, K., Mabood, F., and Smith, D.L., Acta Agric. Scand._Sect B Soil. Plant Sci., 2005, vol. 55, no. 4, pp. 293–298.

    CAS  Google Scholar 

  22. Seo, H.S., Li, J., Lee, S.Y., Yu, J.W., Kim, K.H., Lee, S.H., Lee, I.J., and Paek, N.C., Mol. Cells, 2007, vol. 24, no. 2, pp. 185–193.

    CAS  PubMed  Google Scholar 

  23. Kinkema, M. and Gresshoff, P.M., Mol. Plant–Microbe Interact., 2008, vol. 21, no. 10, pp. 1337–1348.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, J., Cardoza, V., Mitchell, D.M., Bright, L., Oldroyd, G., and Harris, J.M., Plant J., 2006, vol. 46, no. 6, pp. 961–970.

    Article  CAS  PubMed  Google Scholar 

  25. Nakagawa, T. and Kawaguchi, M., Plant Cell Physiol., 2006, vol. 47, no. 1, pp. 176–180.

    Article  CAS  PubMed  Google Scholar 

  26. Verhage, A., van Wees, S.C., and Pieterse, C.M., Plant Physiol., 2010, vol. 154, no. 2, pp. 536–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sato, M., Tsuda, K., Wang, L., Coller, J., Watanabe, Y., Glazebrook, J., and Katagiri, F., PLoS Pathog., 2010, vol. 6. p. e1001011.

  28. Thaler, J.S., Humphrey, P.T., and Whiteman, N.K., Trends Plant Sci., 2012, vol. 17, no. 5, pp. 260–270.

    Article  CAS  PubMed  Google Scholar 

  29. Tarchevskii, I.A., Signal’nye sistemy kletok rastenii (Signal Systems of Plant Cells), Moscow Nauka, 2002.

    Google Scholar 

  30. Tong, W.G., Ding, X.Z., and Adrian, T.E., Biochem. Biophys. Res. Commun., 2002, vol. 296, no. 1, pp. 942–949.

    Article  CAS  PubMed  Google Scholar 

  31. Lapenna, D., Ciofani, G., Pierdomenico, S.D., Neri, M., Cuccurullo, C., Giamberardino, M.A., and Cuccurullo, F., Biochim. Biophys. Acta, 2009, vol. 1790, no. 1, pp. 25–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rudikovskii.

Additional information

Original Russian Text © E.G. Rudikovskaya, G.P. Akimova, A.V. Rudikovskii, N.B. Katysheva, L.V. Dudareva, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 2, pp. 219–224.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudikovskaya, E.G., Akimova, G.P., Rudikovskii, A.V. et al. Content of salicylic and jasmonic acids in pea roots (Pisum sativum L.) at the initial stage of symbiotic or pathogenic interaction with bacteria of the family Rhizobiaceae . Appl Biochem Microbiol 53, 237–241 (2017). https://doi.org/10.1134/S0003683817020156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817020156

Keywords

Navigation