Advertisement

Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 131–139 | Cite as

Nodulation competitiveness of nodule bacteria: Genetic control and adaptive significance: Review

  • O. P. Onishchuk
  • N. I. Vorobyov
  • N. A. Provorov
Article

Abstract

The most recent data on the system of cmp (competitiveness) genes that determine the nodulation competitiveness of rhizobial strains, i.e., the ability to compete for nodule formation in leguminous plants, is analyzed. Three genetic approaches for the construction of economically valuable strains of rhizobia are proposed: the amplification of positive regulators of competitiveness, the inactivation of the negative regulators of this trait, and the introduction of efficient competitiveness factors into strains capable of active nitrogen fixation.

Keywords

rhizobia nodulation competitiveness cmp genes frequency-dependent selection genetic engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Triplett, E.W., Appl. Environ. Microbiol., 1990, vol. 56, no. 1, pp. 98–103.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Onishchuk, O.P. and Simarov, B.V., Russ. J. Genet., 1996, vol. 32, no. 9, pp. 1001–1010.Google Scholar
  3. 3.
    Provorov, N.A. and Vorob’ev, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Genetic Bases of Evolution of Plant–Microbe Symbiosis), Tikhonovich, I.A., Ed., St. Petersburg Inform- Navigator, 2012.Google Scholar
  4. 4.
    Onishchuk, O.P., Kurchak, O.N., Sharypova, L.A., Provorov, N.A., and Simarov, B.V., Russ. J. Genet., 2001, vol. 37, no. 11, pp. 1266–1271.CrossRefGoogle Scholar
  5. 5.
    Winarno, R. and Lie, T.A., Plant Soil, 1979, vol. 51, no. l, pp. 135–142.CrossRefGoogle Scholar
  6. 6.
    Balatti, P.A. and Pueppke, S.G., Plant Physiol., 1990, vol. 94, no. 3, pp. 1276–1281.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Provorov, N.A., Zhukov, V.A., Kurchak, O.N., Onishchuk, O.P., Andronov, E.E., Borisov, A.Yu., Chizhevskaya, E.P., Naumkina, T.S., Ovtsyna, A.O., Vorob’ev, N.I., Simarov, B.V., and Tikhonovich, I.A., Appl. Biochem. Microbiol., 2013, vol. 49, no. 3, pp. 209–214.CrossRefGoogle Scholar
  8. 8.
    Onishchuk, O.P., Sharypova, L.A., Kurchak, O.N., Bekker, A., and Simarov, B.V., Russ. J. Genet., 2005, vol. 41, no. 12, pp. 1337–1342.CrossRefGoogle Scholar
  9. 9.
    Pobigaylo, N., Szymczak, S., Nattkemper, T.W., and Becker, A., Mol. Plant–Microbe Interact., 2008, vol. 21, no. 2, pp. 219–231.CrossRefPubMedGoogle Scholar
  10. 10.
    Wielbo, J., Marek-Kozaczuk, M., Kubik-Komar, A., and Skorupska, A., Can. J. Microbiol., 2007, vol. 53, no. 8, pp. 957–967.CrossRefPubMedGoogle Scholar
  11. 11.
    Oresnik, I.J., Pacarynuk, L.A., and Obrien, S.A.P., Mol. Plant–Microbe Interact., 1998, vol. 11, no. 12, pp. 1175–1185.CrossRefGoogle Scholar
  12. 12.
    Ding, H., Yip, C.B., and Geddes, B.A., Arch. Microbiol., 2012, vol. 158, no. 7, pp. 1369–1378.CrossRefGoogle Scholar
  13. 13.
    Jimenez-Zurdo, J.I., van Dillewijn, P., and Soto, M.J., Mol. Plant–Microbe Interact., 1995, vol. 8, no. 6, pp. 492–498.CrossRefPubMedGoogle Scholar
  14. 14.
    Ampomah, O.Y., Jensen, J.B., and Bhuvaneswari, T.W., New Phytol., 2008, vol. 179, no. 5, pp. 495–504.CrossRefPubMedGoogle Scholar
  15. 15.
    Frederix, M., Edwards, A., and Swiderska, A., Mol. Microbiol., 2014, vol. 93, no. 3, pp. 464–478.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kosch, K., Werner, D., and Miller, P., Mol. Plant–Microbe Interact., 1993, vol. 6, no. 1, pp. 99–106.CrossRefGoogle Scholar
  17. 17.
    Sharypova, L.A., Niehaus, K., Scheidle, H., Holst, O., and Becker, A., J. Biol. Chem., 2003, vol. 278, no. 15, pp. 12946–12954.CrossRefPubMedGoogle Scholar
  18. 18.
    Zatovskaya, T.V., Kosenko, L.V., Yurgel’, S.N., and Simarov, B.V., Mikrobiol. Zh., 2000, vol. 62, no. 2, pp. 27–37.Google Scholar
  19. 19.
    You, Z., Gao, X., Ho, M.M., and Borthakur, D., Arch. Microbiol., 1998, vol. 9, no. 11, pp. 2619–2627.CrossRefGoogle Scholar
  20. 20.
    Triplett, E.W., Proc. Natl. Acad. Sci. U. S. A., 1988, vol. 85, no. 1, pp. 1–5.CrossRefGoogle Scholar
  21. 21.
    Okazaki, S., Nukui, N., Sugawara, M., and Minamisawa, K., Microb. Environ., 2004, vol. 19, no. 2, pp. 99–111.CrossRefGoogle Scholar
  22. 22.
    Onishchuk, O.P., Sharypova, L.A., and Simarov, B.V., Plant Soil, 1994, vol. 197, no. 2, pp. 267–274.CrossRefGoogle Scholar
  23. 23.
    García-Rodríguez, F.M. and Toro, N., Mol. Plant–Microbe Interact., 2000, vol. 13, no. 6, pp. 583–591.CrossRefPubMedGoogle Scholar
  24. 24.
    Ivanova, K.A., Tsyganova, A.V., Brewin, N.J., Tikhonovich, I.A., and Tsyganov, V.E., Protoplasma, 2015, vol. 252, no. 8, pp. 1505–1517.CrossRefPubMedGoogle Scholar
  25. 25.
    Amarger, N. and Lobreau, J.P., Appl. Environ. Microbiol., 1982, vol. 44, no. 3, pp. 583–588.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Beattie, G.A. and Handelsman, J.O., J. Gen. Microbiol., 1993, vol. 139, no. 3, pp. 529–538.CrossRefPubMedGoogle Scholar
  27. 27.
    Provorov, N.A. and Vorob’ev, N.I., Russ. J. Genet., 1998, vol. 34, no. 12, pp. 1455–1461.Google Scholar
  28. 28.
    Vorob’ev, N.I. and Provorov, N.A., Sel’skokhoz. Biol., 2015, no. 3, pp. 298–304.Google Scholar
  29. 29.
    Zheng, H., Zhong, Z., Lai, X., Chen, W.X., Li, S., and Zhu, J., J. Bacteriol., 2006, vol. 188, no. 6, pp. 1943–1949.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Koutsoudis, M.D., Tsaltas, D., Minogue, T.D., and von Bodman, Koutsoudi., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 11, pp. 5983–5988.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pérez-Montaño, F., Jiménez-Guerrero, I., Del Cerro, P., Baena-Ropero, I., López-Baena, F.J., Ollero, F.J., Bellogín, R., Lloret, J., and Espuny, R., PLoS One, 2014, no. 8 (9), p. e105901. doi. eCollection 2014. doi 10.1371/journal.pone.0105901CrossRefGoogle Scholar
  32. 32.
    Jitacksorn, S. and Sadowsky, M.J., Appl. Environ. Microbiol., 2008, vol. 74, no. 12, pp. 3749–3756.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schluter, J.P., Czuppon, P., Schauer, O., Pfaffelhuber, P., McIntosh, M., and Becker, A., J. Biotechnol., 2015, vol. 198, no. 1, pp. 3–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Vorob’ev, N.I., Semenov, A.M., Shatalov, A.A., Van Bruggen A.Kh.K., and Sviridova, O.V., Izv. Samarsk. NTs RAN, 2009, vol. 11, no. 7, pp. 1620–1624.Google Scholar
  35. 35.
    Finan, T., J. Bacteriol., 2002, vol. 184, no. 8, pp. 2855–2856.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Provorov, N.A., Onishchuk, O.P., Yurgel’, S.N., Kurchak, O.N., Chizhevskaya, E.P., Vorob’ev, N.I., Zatovskaya, T.V., and Simarov, B.V., Russ. J. Genet., 2014, vol. 50, no. 11, pp. 1125–1136.CrossRefGoogle Scholar
  37. 37.
    Onishchuk, O.P., Kurchak, O.N., Chizhevskaya, E.P., Provorov, N.A., and Simarov, B.V., Sel’skokhoz. Biol., 2015, vol. 50, no. 3, pp. 339–344.Google Scholar
  38. 38.
    Sessitsch, A., Hardarson, G., De Vos, W., and Wilson, K.J., Plant Soil, 1998, vol. 204, no. 1, pp. 35–45.CrossRefGoogle Scholar
  39. 39.
    Singh, S.K., Jaiswal, S.K., Vaishampayan, A., and Dhar, B., Int. J. Agric. Sci. Res., 2013, vol. 3, no. 1, pp. 121–128.Google Scholar
  40. 40.
    Marek-Kozaczuk, M., Wielbo, J., Pawlik, A., and Skorupska, A., Pol. J. Microbiol., 2014, vol. 63, no. 4, pp. 375–386.PubMedGoogle Scholar
  41. 41.
    May, S.N. and Bohlool, D.D., Appl. Environ. Microbiol., 1983, vol. 45, no. 3, pp. 960–965.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Moawad, H. and Bohlool, B.B., Appl. Environ. Microbiol., 1984, vol. 48, no. 1, pp. 5–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Tas, E., Leinonen, P., Saano, A., Rasanen, L.A., Kaijalainen, S., Piippola, S., Hakola, S., and Lindstrom, K., Appl. Environ. Microbiol., 1996, vol. 62, no. 2, pp. 529–535.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Sharypova, L.A. and Simarov, B.V., Trudy VNIISKhM, 1985, vol. 55, pp. 85–90.Google Scholar
  45. 45.
    Ziegler, D., Pothier, J.F., Ardley, J., Fossou, R.K., Pflüger, V., De Meyer, S., Vogel, G., Tonolla, M., Howieson, J., Reeve, W., and Perret, X., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 13, pp. 5547–5562.CrossRefPubMedGoogle Scholar
  46. 46.
    Tobar, R.M., Aczon-Aguilar, C., Sanjuan, J., and Barea, J.M., Appl. Soil Ecol., 1996, vol. 4, no. 1, pp. 15–21.CrossRefGoogle Scholar
  47. 47.
    Lodeiro, A.R., Lopez-Garcia, S.L., Vazguez, T.E.E., and Favelukes, G., FEMS Microbiol. Lett., 2000, vol. 188, no. 2, pp. 177–184.CrossRefPubMedGoogle Scholar
  48. 48.
    Maj, D., Wielbo, J., Marec-Kozaczuk, M., and Skorupska, A., Microbiol. Res., 2010, vol. 165, no. 1, pp. 50–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Robleto, E.A., Kmiecik, K., Oplinger, E.S., Nienhuis, J., and Triplett, E.W., Appl. Environ. Microbiol., 1998, vol. 64, no. 7, pp. 2630–2633.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Martinez-Romero, E. and Rosenblueth, M., Appl. Environ. Microbiol., 1990, vol. 56, no. 8, pp. 2384–2388.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Borthakur, D. and Gao, X., Can. J. Microbiol., 1996, vol. 42, no. 3, pp. 903–910.CrossRefPubMedGoogle Scholar
  52. 52.
    Kurchak, O.N., Provorov, N.A., and Simarov, B.V., Russ. J. Genet., 2001, vol. 37, no. 9, pp. 1025–1031.CrossRefGoogle Scholar
  53. 53.
    Vinuesa, P., Neumann-Silkow, F., Pacios-Bras, C., Spaink, H.P., Martinez-Romero, E., and Werner, D., Mol. Plant–Microbe Interact., 2003, vol. 16, no. 2, pp. 159–168.CrossRefPubMedGoogle Scholar
  54. 54.
    Dorosinskii, L.M., Biologicheskii azot v sel’skom khozyaistve SSSR (Biological Nitrogen in Agriculture of the USSR), Moscow Nauka, 1989.Google Scholar
  55. 55.
    Triplett, E.W. and Sadowsky, M.J., Annu. Rev. Microbiol., 1992, vol. 46, pp. 399–428.CrossRefPubMedGoogle Scholar
  56. 56.
    Crook, M.B., Lindsay, D.P., Biggs, M.B., Bentley, J.S., Price, J.C., Clement, S.C., Clement, M.J., Long, S.R., and Griffitt, J.S., Mol. Plant–Microbe Interact., 2012, vol. 25, no. 8, pp. 1026–1033.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    van Dillewijn, P., Soto, M., Villadas, P., and Toro, N., Appl. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 3860–3865.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lagares, A., Hozbor, D.F., Niehaus, K., Otero, A.J., Lorenzen, J., Arnold, W., and Puhler, A., J. Bacteriol., 2001, vol. 183, no. 4, pp. 1248–1258.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sugawara, M. and Sadowsky, M.J., Mol. Plant–Microbe Interact., vol. 27, no. 4, pp. 328–335.Google Scholar
  60. 60.
    Kaufman, L. and Rousseeuw, P., Finding Groups in Data: an Introduction to Cluster Analysis, New York Wiley-Interscience, 2005.Google Scholar
  61. 61.
    Janczarek, M., Jaroszuk-Scisel, J., and Skorupska, A., Antonie van Leeuwenhoek, 2009, vol. 96, no. 4, pp. 471–486.CrossRefPubMedGoogle Scholar
  62. 62.
    Chizhevskaya, E.P., Onishchuk, O.P., Sharypova, L.A., and Simarov, B.V., Biology of Plant–Microbe Interactions, St. Petersburg Biont, 2004.Google Scholar
  63. 63.
    Mavingui, P., Flores, M., Romero, D., Martinez-Romero, E., and Palacios, R., Nature Biotechnol., 1997, vol. 15, no. 2, pp. 564–569.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • O. P. Onishchuk
    • 1
  • N. I. Vorobyov
    • 1
  • N. A. Provorov
    • 1
  1. 1.All-Russia Research Institute for Agricultural MicrobiologyPushkinSt. PetersburgRussia

Personalised recommendations