Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 209–216 | Cite as

Aerobic degradation of 2,4-dichlorophenoxyacetic acid and other chlorophenols by Pseudomonas strains indigenous to contaminated soil in South Africa: Growth kinetics and degradation pathway

  • A. O. Olaniran
  • L. Singh
  • A. Kumar
  • P. Mokoena
  • B. Pillay
Article
  • 78 Downloads

Abstract

Three indigenous pseudomonads, Pseudomonas putida DLL-E4, Pseudomonas reactans and Pseudomonas fluorescens, were isolated from chlorophenol-contaminated soil samples collected from a sawmill located in Durban (South Africa). The obtained isolates were tested for their ability to degrade chlorophenolic compounds: 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) in batch cultures. The isolates were found to effectively degrade up to 99.5, 98.4 and 94.0% with a degradation rate in the range of 0.67–0.99 (2,4-D), 0.57–0.93 (2,4-DCP) and 0.30–0.39 (2,4,6-TCP) mgL–1 day–1 for 2,4-D; 2,4-DCP and 2,4,6-TCP, respectively. The degradation kinetics model revealed that these organisms could tolerate up to 600 mg/L of 2,4-DCP. Catechol 2,3-dioxygenase activity detected in the crude cell lysates of P. putida DLL-E4 and P. reactans was 21.9- and 37.6-fold higher than catechol 1,2-dioxygenase activity assayed, suggesting a meta-pathway for chlorophenol degradation by these organisms. This is also supported by the generally high expression of C23O gene (involved in meta-pathway) relative to tfdC gene (involved in ortho-pathway) expression. Results of this study will be helpful in the exploitation of these organisms and/or their enzymes in bioremediation strategies for chlorophenol-polluted environment.

Keywords

chlorophenols Pseudomonas spp. 2,4-dichlorophenoxyacetic acid (2,4-D) 2,4-dichlorophenol (2,4-DCP) 2,4,6-trichlorophenol (2,4,6-TCP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olaniran, A.O. and Igbinosa, E.O., Chemosphere, 2011, vol. 83, no. 10, pp.1297–1306.Google Scholar
  2. 2.
    Michalowicz, J. and Duda, W., Pol. J. Environ. Stud., 2007, vol. 16, no. 3, pp. 347–362.Google Scholar
  3. 3.
    Igbinosa, E.O., Odjadjare, E.E., Chigor, V.N., Igbinosa, I.H., Emoghene, A.O., Ekhaise, et al., Sci. World J., 2013, vol. 2013, no. 1, pp. 1–11.Google Scholar
  4. 4.
    Potgieter, J.H., Bada, S.O., and Potgieter-Vermaak, S.S., Water S. A. (Online), 2009, vol. 35, no. 1, pp. 2–5.Google Scholar
  5. 5.
    Gutierrez, M.E., Gonzalez, M.H., Martinez-Hernandez, S., Texier, A.C., Cuervo-Lopez, F.M., and Gomez, J., Environ. Technol., 2012, vol. 33, no. 12, pp. 1375–1382.CrossRefGoogle Scholar
  6. 6.
    Kumar, A., Trefault, N., and Olaniran, A.O., Crit. Rev. Microbiol., 2016, vol. 42, no. 2, pp. 194–208.PubMedGoogle Scholar
  7. 7.
    Lillis, L., Clipson, N., and Doyle, E., FEMS Microbiol. Ecol., 2010, vol. 73, no. 2, pp. 363–369.PubMedGoogle Scholar
  8. 8.
    Nicolaisen, M.H., Baelum, J., Jacobsen, C.S., and Sorensen, J., Environ. Microbiol., 2008, vol.10, no. 1, pp. 571–579.CrossRefPubMedGoogle Scholar
  9. 9.
    Fukumori, F. and Hausinger, R.P., J. Biol. Chem., 1993, vol. 268, no. 1, pp. 24311–24317.PubMedGoogle Scholar
  10. 10.
    Balajee, S. and Mahadevan, A., Xenobiotics, 1999, vol. 20, no. 6, pp. 607–617.CrossRefGoogle Scholar
  11. 11.
    Nakai, C., Horiike, K., Kuramitsu, S., Kagamiyama, H., and Nozaki, M., J. Biol. Chem., 1990, vol. 265, no. 2, pp. 660–665.PubMedGoogle Scholar
  12. 12.
    Nakai, C., Nakazawa, T., and Nozaki, M., Arch. Biochem. Biophys., 1988, vol. 267, no. 2, pp. 701–713.CrossRefPubMedGoogle Scholar
  13. 13.
    Kukor, J.J. and Olsen, R.H., J. Bacteriol., 1991, vol. 173, no. 15, pp. 4587–4594.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kaschabek, S.R., Kasberg, T., Muller, D., Mars, A.E., Janssen, D.B., and Reineke, W., J. Bacteriol., 1998, vol. 180, no. 2, pp. 296–302.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Mars, A.E., Kingma, J., Kaschabek, S.R., Reineke, W., and Janssen, D.B., J. Bacteriol., 1999, vol. 181, no. 4, pp.1309–1318.Google Scholar
  16. 16.
    Wieser, M., Eberspacher, J., Vogler, B., and Lingens, F., FEMS Microbiol. Lett., 1994, vol. 116, no. 1, pp. 73–78.CrossRefPubMedGoogle Scholar
  17. 17.
    Shinji, T., Ryosuke, N., Ayumi, M., and Ken-ichi, Y., BioMed Central: The Open Access, 2013, vol. 13, no. 62, pp. 1–10.Google Scholar
  18. 18.
    Olaniran, A.O., Pillay, D., and Pillay, B., J. Environ. Sci., 2004, vol. 16, no. 6, pp. 968–972.Google Scholar
  19. 19.
    Olaniran, A.O., Naidoo, S., Masango, M.G., and Pillay, B., Biotechnol. Bioprocess. Eng., 2007, vol. 12, no. 3, pp. 276–281.CrossRefGoogle Scholar
  20. 20.
    Movahedyan, H., Khorsandi, H., Salehi, R., and Nikaeen, M., Iran J. Environ. Health Sci. Eng., 2009. vol. 6, no. 1, pp.115–120.Google Scholar
  21. 21.
    McFarland, J., J. Am.Med. Assoc., 1907, vol. XLIX, no. 14, pp. 1176.CrossRefGoogle Scholar
  22. 22.
    Al-Thani, R.F., Abd-El-Haleem, A.M., and Al-Shammri, M., African J. Biotechnol., 2007 vol. 6, no. 23, pp. 2675–2681.CrossRefGoogle Scholar
  23. 23.
    Wu, J. and Nofziger, D.L., J. Environ. Quality, 1999, vol. 28, no. 1, pp. 92–100.CrossRefGoogle Scholar
  24. 24.
    Kargi, F. and Eker, S., Inter. Biodeter. Biodegrad., 2005, vol. 55, no. 1, pp. 25–28.CrossRefGoogle Scholar
  25. 25.
    Mahiudddin, M.D., Fakhruddin, A.N.M., and Abdullah-Al-Mahin, A., Int. School. Res. Net. Microbiol., 2011, vol. 201, no. 1, pp. 1–6.Google Scholar
  26. 26.
    Sei, K., Asano, K.I., Tateishi, N., Mori, K., Ike, M., and Fujita, M., J. Biosci. Bioeng., 1999, vol. 88, no. 5, pp. 542–550.CrossRefPubMedGoogle Scholar
  27. 27.
    El-Fantroussi, S. and Agathos, S.N., Curr. Opin. Microbiol., 2005, vol. 8, no. 3, pp.1–8.CrossRefGoogle Scholar
  28. 28.
    Xing-ping, Liu, Water Sci. Eng., 2009, vol. 2, no. 3, pp. 110–120.Google Scholar
  29. 29.
    Fakhruddin, A.N.M. and Quilty, B., World J. Microbiol. Biotechnol., 2005, vol. 21, no. 8, pp. 1541–1548.CrossRefGoogle Scholar
  30. 30.
    Zouari, H., Moukha, S., Labat, M., and Sayadi, S., Appl. Biochem. Biotechnol., 2002, vol. 103, no. 6, pp. 261–276.CrossRefGoogle Scholar
  31. 31.
    Gaofeng, W., Hong, X., and Mei, J., Chem. J. Inter., 2004, vol. 10, no. 6, pp. 67.Google Scholar
  32. 32.
    Annachhatre, A.P. and Gheewala, S.H., Biotechnol. Adv., 1996, vol. 14, no. 1, pp. 35–56.CrossRefPubMedGoogle Scholar
  33. 33.
    Tay, J.H., He, Y.X., and Yan, Y.G., J. Environ. Eng., 2001, vol. 127, no. 1, pp. 38–45.CrossRefGoogle Scholar
  34. 34.
    Leander, M., Vallaeys, T., and Fulthorpe, R., Can. J. Microbiol., 1998, vol. 44, no. 5, pp. 482–486.PubMedGoogle Scholar
  35. 35.
    Merimaa, M., Heinaru, E., and Liivak, M., Arch. Microbiol., 2006, vol. 186, no. 4, pp. 287–296.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. O. Olaniran
    • 1
  • L. Singh
    • 1
  • A. Kumar
    • 1
  • P. Mokoena
    • 1
  • B. Pillay
    • 1
  1. 1.Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and ScienceUniversity of KwaZulu-Natal (Westville Campus)DurbanRepublic of South Africa

Personalised recommendations