Advertisement

Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 242–249 | Cite as

Methane production by anaerobic digestion of organic waste from vegetable processing facilities

  • M. A. Gladchenko
  • D. A. Kovalev
  • A. A. Kovalev
  • Yu. V. Litti
  • A. N. Nozhevnikova
Article

Abstract

The article concerns converting waste from vegetable processing facilities into methane in anaerobic reactors with a small amount of inoculum (8.4%). Anaerobic digestion of vegetable waste with a high content of organic acids and carbohydrates makes it possible to achieve a methanogenesis productivity of 273–436 L CH4/kg of volatile solidis, which is comparable to or higher than the productivity of such reactors in the world (according to the literature). The contents of ammonia nitrogen and soluble phosphorus in the form of on undiluted substrate basis in the digested vegetable wastes ranged from 3.39 to 5.06 and from 0.78 to 1.03 g/L respectively. Thus, mineralized vegetable waste can be used as an organic fertilizer with a high nutrient content. The results show the feasibility of the technology of conversion of organic waste from vegetable processing facilities into methane and organic fertilizer in anaerobic fermenters (digesters).

Keywords

organic waste vegetable waste anaerobic degradation methanogenesis biogas methane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aksenov, V.V. and Rezepin, A.I., Polzunov. Vestn., 2011, no. 2/1, pp. 76–80.Google Scholar
  2. 2.
    Biogas from pulp, Zh. Sel’skokhoz. Vesti. http://www.agri-news.ru/zhurnal/2013/?1/2013/bioenergiya/biogaz-iz-zhoma.html.Google Scholar
  3. 3.
    Kalyuzhnyi, S.V., Gladchenko, M.A., Sklyar, V.I., Kurakova, O.V., and Shcherbakov, S.S., Environ. Technol., 2000, vol. 21, pp. 919–925.CrossRefGoogle Scholar
  4. 4.
    Sklyar, V., Epov, A., Gladchenko, M., et al., Appl. Biochem. Biotechnol._Part A. Enzyme Eng. Biotechnol., 2003, vol. 109, nos. 1–3, pp. 253–262.CrossRefGoogle Scholar
  5. 5.
    Kalyuzhnyi, S.V., Gladchenko, M.A., Starostina, E.A., Shcherbakov, S.S., and Versprille, B., Proizv. Spirta Likerovod. Izd., 2004, no. 3, pp. 10–14.Google Scholar
  6. 6.
    Kalyuzhny, S.V. and Gladchenko, M.A., Water Sci. Technol., 2004, vol. 49, nos. 5–6, pp. 301–308.Google Scholar
  7. 7.
    RF Patent no. 2406578, 2010.Google Scholar
  8. 8.
    RF Patent no. 2433962, 2011.Google Scholar
  9. 9.
    Kalyuzhnyi, S.V., Danilovich, D.A., and Nozhevnikova, A.N., Anaerobnaya biologicheskaya ochistka stochnykh vod (Anaerobic Biological Treatment of Sewage), Itogi nauki i tekhniki Ser. Biotekhnologiya (Advances in Science and Technology, Ser. Biotechnology), Varfolomeev, S.D., Ed., Moscow: VINITI, 1991, vol. 29, p. 155.Google Scholar
  10. 10.
    Dubrovskis, V. and Plume, I., Agronomy Res., 2015, vol. 13, no. 2, pp. 294–302.Google Scholar
  11. 11.
    Koppar, A. and Pullammanappallil, P., Energy, 2013, vol. 60, no. 1, pp. 62–68.CrossRefGoogle Scholar
  12. 12.
    Wall, D.M., Wu-Haan, W., and Safferman, S.I., Biomass Bioenergy, 2012, vol. 46, no. 1, pp. 429–434.CrossRefGoogle Scholar
  13. 13.
    Zerrouki, S., Rihani, R., Bentahar, F., and Belkacemi, K., Water Sci. Technol., 2015, vol. 72, no. 1, pp. 123–134.CrossRefPubMedGoogle Scholar
  14. 14.
    Esparza, SotoM., Solis, MorelosC., and Herna, J.J., Water Sci. Technol., 2011, vol. 64, no. 8, pp. 1629–1635.CrossRefGoogle Scholar
  15. 15.
    Hidalgo, D., Gomez, M., Martin-Marroquin, J.M., Aguado, A., and Sastre, E., Int. J. Environ. Sci. Technol., 2015, vol. 12, no. 5, pp. 1727–1736.CrossRefGoogle Scholar
  16. 16.
    Orsik, L.S., Sorokin, N.T., and Fedorenko, V.F., Bioenergetika: mirovoi opyt i prognoz razvitiya (TRANSLATION), Moscow Rosinformagrotekh, 2008.Google Scholar
  17. 17.
    Ferrer, P., Cambra-Lopez, M., Cerisuelo, A., Penaranda, D.S., and Moset, V., Waste Management, 2014, vol. 34, no. 1, pp. 196–203.CrossRefPubMedGoogle Scholar
  18. 18.
    Panagiotopoulos, I.A., Karaoglanoglou, L.S., Koullas, D.P., Bakker, R.R., Claassen, P.A.M., and Koukios, E.G., J. Cleaner Production, 2015, vol. 102, pp. 521–528.CrossRefGoogle Scholar
  19. 19.
    Makki, H.M., Abdel-Rahman, A.Y., Khalil, M.K.M., and Mohamed, M., S, Food Chem., 1986, vol. 20, no. 1, pp. 39–44.CrossRefGoogle Scholar
  20. 20.
    Lur’e, Yu.Yu., Analiticheskaya khimiya promyshlennykh stochnykh vod (Analytical Chemistry of Industrial Waste Water), Moscow Khimiya, 1984.Google Scholar
  21. 21.
    Dubber, D. and Gray, N., J. Environ. Sci. Health, 2010, vol. 45, pp. 1595–1600.CrossRefGoogle Scholar
  22. 22.
    Kalyuzhnyi, S., Gladchenko, M., Starostina, E., Shcherbakov, S., and Versprille, B., Water Sci. Technol., 2005, vol. 52, nos. 10–11, pp. 273–280.PubMedGoogle Scholar
  23. 23.
    Fawcett, J.K. and Scott, J.E., J. Clin Path., 1960, vol. 13, pp. 156–159.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gladchenko, M., Gaydamaka, S., Murygina, V., and Varfolomeev, S., Moscow Univ. Chem. Bull., 2014, vol. 69, no. 4, pp. 187–193.CrossRefGoogle Scholar
  25. 25.
    Sen’ko, O.V., Gladchenko, M.A., Lyagin, I.V., Nikol’skaya, A.B., Maslova, O.V, Chernova, N.I., Kiseleva, S.V., Korobkova, T.P., Efremenko, E.N., and Varfolomeev, S.D., Al’ternativ. Energet. Ekol., 2012, no. 3, pp. 89–94.Google Scholar
  26. 26.
    Di Maria, F., Sordi, A., Cirulli, G., and Micale, C., Appl. Energy, 2015, no. 150, pp. 9–14.CrossRefGoogle Scholar
  27. 27.
    Liang, S. and McDonald, A. G, Waste Management, 2015, vol. 46, pp. 197–200.CrossRefPubMedGoogle Scholar
  28. 28.
    Fang, C., Boe, K., and Angelidaki, I., Biores. Technol., 2011, vol. 102, no. 10, pp. 5734–5741.CrossRefGoogle Scholar
  29. 29.
    Bailey, J.E. and Ollis, D.F., Biochemical Engineering Fundamentals, New York McGraw-Hill, 1989.Google Scholar
  30. 30.
    Messenger, J.R., Villiers, H.A., and Ekama, G.A., Water Sci. Technol., 1990, vol. 22, no. 12, pp. 217–227.Google Scholar
  31. 31.
    McIntosh, K.B. and Oleszkiewicz, J.A., Water Sci. Technol., 1997, vol. 36, no. 11, pp. 189–196.CrossRefGoogle Scholar
  32. 32.
    Nozhevnikova, A.N., Kallistova, A.Yu., Litti, Yu.V., and Kevbrina, M.V., Biotekhnologiya i mikrobiologiya anaerobnoi pererabotki organicheskikh kommunal’nykh otkhodov (Biotechnology and Microbiology of Anaerobic Processing of Organic Municipal Waste), Nozhevnikov, A.N., Ed., Moscow Universitetskaya kniga, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • M. A. Gladchenko
    • 1
  • D. A. Kovalev
    • 2
  • A. A. Kovalev
    • 2
  • Yu. V. Litti
    • 3
  • A. N. Nozhevnikova
    • 3
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.All-Russia Research Institute for Electrification of AgricultureMoscowRussia
  3. 3.Winogradsky Institute of Microbiology, Fundamentals of Biotechnology Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations