Advertisement

Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 194–200 | Cite as

Functionality of Metdi5511gene in Methylobacterium dichloromethanicum DM4

  • Yu. E. Firsova
  • M. L. Torgonskaya
  • Yu. A. Trotsenko
Article
  • 35 Downloads

Abstract

A knockout mutant of Methylobacterium dichloromethanicum DM4 with an inactivated gene of a putative transcription regulator METDI5511 (ΔMETDI5511) has been obtained. The expression of this gene increases many times when the strain is grown on dichloromethane compared to methanol. The mutant had a low growth rate on dichloromethane as compared with the original strain and was found to be more sensitive to influences of various types of stress (oxidative, osmotic stress, heat, and drying). The cells were stained with Fluorescent Brightener 28 (Calcofluor white), and the intensity of their fluorescence showed that the ΔMETDI5511 mutant had significantly increased numbers of surface polysaccharides with β-1,3 and β-1,4-glycoside bonds. The results indicate that the METDI5511 gene is involved in the regulation of surface polysaccharides that play an important role in adaptation of cells to growth on dichloromethane.

Keywords

aerobic methylobacteria dichloromethane Methylobacterium dichloromethanicum DM4 polysaccharides METDI5511 Calcofluor white 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muller, E.E., Hourcade, E., Louhichi-Jelail, Y., Hammann, P., Vuilleumier, S., and Bringel, F., Environ. Microbiol., 2011, vol. 13, no. 9, pp. 2518–2535.CrossRefPubMedGoogle Scholar
  2. 2.
    Vuilleumier, S. and Pagni, M., Appl. Microbiol. Biotechnol., 2002, vol. 58, pp. 138–146.Google Scholar
  3. 3.
    Michener, J.K., Vuilleumier, S., Bringel, F., and Marx, C.J., J. Bacteriol., 2014, vol. 196, no. 11, pp. 2101–2107.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Firsova, Yu.E., Torgonskaya, M.L., and Trotsenko, Yu.A., Microbiology (Moscow), 2015, vol. 84, no. 6, pp. 796–803.CrossRefGoogle Scholar
  5. 5.
    Cooley, M.B., D’Sousa, M.R., and Kado, C.I., J. Bacteriol., 1991, vol. 173, pp. 2608–2616.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Keller, M., Roxlau, A., Weng, W.M., Schmidt, M., Quandt, J., Niehaus, K., Jording, D., Arnold, W., and Puhler, A., Mol Plant Microbe Interact., 1995, vol. 8, no. 2, pp. 267–277.CrossRefPubMedGoogle Scholar
  7. 7.
    Martin, M., Lioret, J., Sanchez-Contreras, M., Bonilla, I., and Rivilla, R., Mol. Plant Microbe Interact., 2000, vol. 13, pp. 129–135.CrossRefPubMedGoogle Scholar
  8. 8.
    Firsova, Yu.E., Fedorov, D.N., and Trotsenko, Yu.A., Microbiology (Moscow), 2011, vol. 80, no. 6, pp. 805–811.CrossRefGoogle Scholar
  9. 9.
    Sambrook, J. and Russel, D.W., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor, New York Cold Spring Harbor Laboratory, 2001.Google Scholar
  10. 10.
    Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A., Gene, 1994, vol. 145, no. 1, pp. 69–73.CrossRefPubMedGoogle Scholar
  11. 11.
    Jones, K.M., J. Bacteriol., 2012, vol. 194, no. 16, pp. 4322–4331.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gourion, B., Francez-Charlot, A. and Vorholt, J.A., J. Bacteriol., 2008, vol. 190, no. 3, pp. 1027–1035.CrossRefPubMedGoogle Scholar
  13. 13.
    Jorg, G. and Bertau, M., Anal. Biochem., 2004, vol. 328, pp. 22–28.CrossRefPubMedGoogle Scholar
  14. 14.
    Rasconi, S., Jobard, M., Jouve, L., and Sime-Ngando, T., Appl. Environ. Microbiol., 2009, vol. 75, no. 8, pp. 2545–2553.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schmitt, M.R. and Wise, M.L., Cereal Chem., 2009, vol. 86, no. 2, pp. 187–190.CrossRefGoogle Scholar
  16. 16.
    Josic, D., Kuzmanovic, S., Pivic, R., and Milicic, B., Roumanian Biotechnol. Lett., 2006, vol. 11, no. 2, pp. 2637–2641.Google Scholar
  17. 17.
    Finan, T.M., Hirsch, A.M., Leigh, J.A., Johansen, E., Kuldau, G.A., Deegan, S., Walker, G.C., and Signer, E.R., Cell, 1965, vol. 40, no. 4, pp. 869–877.CrossRefGoogle Scholar
  18. 18.
    Leigh, J.A., Signer, E.R., and Walker, G.C., Proc. Natl. Acad. Sci. U. S. A. Genetics, 1985, vol. 82, no. 18, pp. 6231–6235.CrossRefGoogle Scholar
  19. 19.
    Doronina, N.V., Trotsenko, Y.A., Tourova, T.P., Kuznetzov, B.B., and Leisinger, T., Syst. Appl. Microbiol., 2000, vol. 23, no. 2, pp. 210–218.CrossRefPubMedGoogle Scholar
  20. 20.
    Torgonskaya M.L., Doronina N.V., Hourcade E., Trotsenko Y.A., Vuilleumier S., J. Basic Microbiol, 2011, vol. 51, no. 3, pp. 296–303.CrossRefPubMedGoogle Scholar
  21. 21.
    Potts, M., Microbiol. Rev., 1994, vol. 58, no. 4, pp. 755–805.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Pirog, T.P., Grinberg, T.A., and Malashenko, Yu.R., Microbiology (Moscow), 1997, vol. 66, no. 3, pp. 279–283.Google Scholar
  23. 23.
    Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T., Appl. Environ. Microbiol., 2005, vol. 71, no. 11, pp. 7327–7333.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tsyganova, A.V. and Tsyganov, V.E., Usp. Sovrem. Biol., 2012, vol. 132, no. 2, pp. 211–222.Google Scholar
  25. 25.
    Jones, K.M., Kobayashi, H., Davies, B.W., Taga, M.E., and Walker, G.C., Nat. Rev. Microbiol., 2007, vol. 5, no. 8, pp. 619–633.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Simon, R., Priefer, U., and Puhler, A., Bio/Technology, 1983, vol. 1, pp. 784–791.CrossRefGoogle Scholar
  27. 27.
    Dennis, J.J. and Zylstra, G.J., Appl. Environ. Microbiol., 1998, vol. 64, pp. 2710–2715.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Marx, C.J. and Lidstrom, M.E., Microbiology, 2001, vol. 147, no. 8, pp. 2065–2075.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • Yu. E. Firsova
    • 1
  • M. L. Torgonskaya
    • 1
  • Yu. A. Trotsenko
    • 1
  1. 1.Institute of the Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations