Skip to main content
Log in

Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The kinetics of oxidation reactions of flavonoids, quercetin, dihydroquercetin, and epicatechin has been studied in the presence of biocatalysts of different natures: horseradish peroxidase, mushroom tyrosinase, and hemoglobin from bull blood. Comparison of the kinetic parameters of the oxidation reaction showed that peroxidase appeared to be the most effective biocatalyst in these processes. The specificity of the enzyme for quercetin increased with increasing the polarity of the solvent in a series of ethanol–acetonitrile–dimethyl sulfoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Middleton, E., Kandaswami, C., and Theoharides, T.C., Pharmacol. Rev., 2000, vol. 52, no. 4, pp. 673–751.

    CAS  PubMed  Google Scholar 

  2. Tsydendambaev, P.B., Khyshiktuev, B.S., and Nikolaev, S.M., Zh. Byull._VSNTs SORAMN, 2006, vol. 52, no. 6, pp. 233–299.

    Google Scholar 

  3. Singh, M., Arseneault, M., Sanderson, T., Murthy, V., and Ramassamy, C., J. Agric. Food Chem., 2008, vol. 56, no. 13, pp. 4855–4873.

    Article  CAS  PubMed  Google Scholar 

  4. Bailly, C., Seed Sci. Res., 2004, vol. 14, no. 2, pp. 93–107.

    Article  CAS  Google Scholar 

  5. Pourcel, L., Routaboul, J., Cheynier, V., Lepiniec, L., and Debeaujon, I., Trends Plant Sci, 2006, vol. 12, no. 1, pp. 29–36.

    Article  PubMed  Google Scholar 

  6. Fenoll, L.G., Garcia-Ruiz, P.A., Varon, R., and Garcia-Canovas, F., J. Agric. Food Chem., 2003, vol. 51, no. 26, pp. 7781–7787.

    Article  CAS  PubMed  Google Scholar 

  7. Franzoi, A.C., Vieira, I.C., Scheeren, C.W., and Dupontb, J., Electroanalysis, 2010, vol. 22, no. 12, pp. 1376–1385.

    Article  CAS  Google Scholar 

  8. Cherviakovsky, E.M., Bolibrukh, D.A., Baranovsky, A.V., Vlasova, T.M., Kurchenko, V.P., Gilep, A.A., and Usanov, S.A., Biochem. Biophys. Res. Commun., 2006, vol. 342, no. 2, pp. 459–464.

    Article  CAS  PubMed  Google Scholar 

  9. Sun, W., Jiang, W., and Jiao, K., J. Chem. Sci., 2005, vol. 117, no. 4, pp. 317–322.

    Article  CAS  Google Scholar 

  10. Zhang, K., Mao, L., and Cai, R., Talanta, 2000, vol. 51, no. 1, pp. 179–186.

    Article  CAS  PubMed  Google Scholar 

  11. Awad, H.M., Boersma, M.G., Vervoort, J., and Tietjens, I.M., Arch. Biochem. Biophys., 2000, vol. 378, no. 2, pp. 224–233.

    Article  CAS  PubMed  Google Scholar 

  12. Keleti, T., Basic Enzyme Kinetics, Budapest Akad Kiado, 1986.

    Google Scholar 

  13. Berezin, I.V. and Martinek, K., Osnovy fizicheskoi khimii fermentativnogo kataliza (Fundamentals of Physical Chemistry of Enzymatic Catalysis), Moscow Vysshaya shkola, 1977.

    Google Scholar 

  14. Vamos–Vigyazo, L., Crit. Rev. Food Sci. Nutr., 1981, vol. 15, no. 1, pp. 49–127.

    Article  PubMed  Google Scholar 

  15. Miller, E. and Schreier, P., Food Chem., 1985, vol. 17, no. 2, pp. 143–154.

    Article  CAS  Google Scholar 

  16. Matheis, G. and Whitaker, J.R., J. Food Biochem., 1984, vol. 8, no. 3, pp. 137–162.

    Article  CAS  Google Scholar 

  17. Makris, D.P. and Rossiter, J.T., Food Chem., 2002, vol. 77, no. 2, pp. 177–185.

    Article  CAS  Google Scholar 

  18. Kubo, N.K. and Shimizu, K., Bio. Med. Chem., 2004, vol. 12, no. 20, pp. 5343–5347.

    Article  CAS  Google Scholar 

  19. Boots, A.W., Kubben, N., Haenen, G., and Bast, A., Biochem. Biophys. Res. Commun., 2003, vol. 308, no. 3, pp. 560–565.

    Article  CAS  PubMed  Google Scholar 

  20. Rogozhin, V.V. and Peretolchin, D.V., Bioorg. Khim., 2009, vol. 35, no. 5, pp. 640–645.

    CAS  PubMed  Google Scholar 

  21. Savic, S., Vojinovic, K., Milenkovic, S., Smelcerovic, A., Lamshoeft, M., and Petronijevic, Z., Food Chem., 2013, vol. 141, no. 4, pp. 4194–4199.

    Article  CAS  PubMed  Google Scholar 

  22. Savic, S.R. and Petronijevic, Z.B., Indian J. Biochem. Biophys., 2013, vol. 50, no. 3, pp. 221–226.

    CAS  PubMed  Google Scholar 

  23. Varfolomeev, S.D. and Gurevich, K.G., Biokinetika (Biokinetics), Moscow Fair–press, 1999.

    Google Scholar 

  24. Szultka, M., Papaj, K., Rusin, A., Szeja, W., and Buszewski, B., Trend. Anal. Chem., 2013, vol. 47, no. 1, pp. 47–67.

    Article  CAS  Google Scholar 

  25. Wach, A., Pyrzynska, K., and Biesaga, M., Food Chem., 2007, vol. 100, no. 2, pp. 699–704.

    Article  CAS  Google Scholar 

  26. Makrisa, D.P. and Rossiterb, J.T., Food Chem., 2002, vol. 77, no. 2, pp. 177–185.

    Article  Google Scholar 

  27. Zhou, A. and Omowunmi, A.S., J. Agric. Food Chem., 2008, vol. 56, no. 24, pp. 12081–12091.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Barsukova.

Additional information

Original Russian Text © M.E. Barsukova, A.I. Tokareva, T.S. Buslova, L.I. Malinina, I.A. Veselova, T.N. Shekhovtsova, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 2, pp. 146–154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsukova, M.E., Tokareva, A.I., Buslova, T.S. et al. Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin. Appl Biochem Microbiol 53, 149–156 (2017). https://doi.org/10.1134/S0003683817020053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817020053

Keywords

Navigation