Advertisement

Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 149–156 | Cite as

Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin

  • M. E. Barsukova
  • A. I. Tokareva
  • T. S. Buslova
  • L. I. Malinina
  • I. A. Veselova
  • T. N. Shekhovtsova
Article

Abstract

The kinetics of oxidation reactions of flavonoids, quercetin, dihydroquercetin, and epicatechin has been studied in the presence of biocatalysts of different natures: horseradish peroxidase, mushroom tyrosinase, and hemoglobin from bull blood. Comparison of the kinetic parameters of the oxidation reaction showed that peroxidase appeared to be the most effective biocatalyst in these processes. The specificity of the enzyme for quercetin increased with increasing the polarity of the solvent in a series of ethanol–acetonitrile–dimethyl sulfoxide.

Keywords

quercetin dihydroquercetin epicatechin biocatalytic oxidation peroxidase tyrosinase hemoglobin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Middleton, E., Kandaswami, C., and Theoharides, T.C., Pharmacol. Rev., 2000, vol. 52, no. 4, pp. 673–751.PubMedGoogle Scholar
  2. 2.
    Tsydendambaev, P.B., Khyshiktuev, B.S., and Nikolaev, S.M., Zh. Byull._VSNTs SORAMN, 2006, vol. 52, no. 6, pp. 233–299.Google Scholar
  3. 3.
    Singh, M., Arseneault, M., Sanderson, T., Murthy, V., and Ramassamy, C., J. Agric. Food Chem., 2008, vol. 56, no. 13, pp. 4855–4873.CrossRefPubMedGoogle Scholar
  4. 4.
    Bailly, C., Seed Sci. Res., 2004, vol. 14, no. 2, pp. 93–107.CrossRefGoogle Scholar
  5. 5.
    Pourcel, L., Routaboul, J., Cheynier, V., Lepiniec, L., and Debeaujon, I., Trends Plant Sci, 2006, vol. 12, no. 1, pp. 29–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Fenoll, L.G., Garcia-Ruiz, P.A., Varon, R., and Garcia-Canovas, F., J. Agric. Food Chem., 2003, vol. 51, no. 26, pp. 7781–7787.CrossRefPubMedGoogle Scholar
  7. 7.
    Franzoi, A.C., Vieira, I.C., Scheeren, C.W., and Dupontb, J., Electroanalysis, 2010, vol. 22, no. 12, pp. 1376–1385.CrossRefGoogle Scholar
  8. 8.
    Cherviakovsky, E.M., Bolibrukh, D.A., Baranovsky, A.V., Vlasova, T.M., Kurchenko, V.P., Gilep, A.A., and Usanov, S.A., Biochem. Biophys. Res. Commun., 2006, vol. 342, no. 2, pp. 459–464.CrossRefPubMedGoogle Scholar
  9. 9.
    Sun, W., Jiang, W., and Jiao, K., J. Chem. Sci., 2005, vol. 117, no. 4, pp. 317–322.CrossRefGoogle Scholar
  10. 10.
    Zhang, K., Mao, L., and Cai, R., Talanta, 2000, vol. 51, no. 1, pp. 179–186.CrossRefPubMedGoogle Scholar
  11. 11.
    Awad, H.M., Boersma, M.G., Vervoort, J., and Tietjens, I.M., Arch. Biochem. Biophys., 2000, vol. 378, no. 2, pp. 224–233.CrossRefPubMedGoogle Scholar
  12. 12.
    Keleti, T., Basic Enzyme Kinetics, Budapest Akad Kiado, 1986.Google Scholar
  13. 13.
    Berezin, I.V. and Martinek, K., Osnovy fizicheskoi khimii fermentativnogo kataliza (Fundamentals of Physical Chemistry of Enzymatic Catalysis), Moscow Vysshaya shkola, 1977.Google Scholar
  14. 14.
    Vamos–Vigyazo, L., Crit. Rev. Food Sci. Nutr., 1981, vol. 15, no. 1, pp. 49–127.CrossRefPubMedGoogle Scholar
  15. 15.
    Miller, E. and Schreier, P., Food Chem., 1985, vol. 17, no. 2, pp. 143–154.CrossRefGoogle Scholar
  16. 16.
    Matheis, G. and Whitaker, J.R., J. Food Biochem., 1984, vol. 8, no. 3, pp. 137–162.CrossRefGoogle Scholar
  17. 17.
    Makris, D.P. and Rossiter, J.T., Food Chem., 2002, vol. 77, no. 2, pp. 177–185.CrossRefGoogle Scholar
  18. 18.
    Kubo, N.K. and Shimizu, K., Bio. Med. Chem., 2004, vol. 12, no. 20, pp. 5343–5347.CrossRefGoogle Scholar
  19. 19.
    Boots, A.W., Kubben, N., Haenen, G., and Bast, A., Biochem. Biophys. Res. Commun., 2003, vol. 308, no. 3, pp. 560–565.CrossRefPubMedGoogle Scholar
  20. 20.
    Rogozhin, V.V. and Peretolchin, D.V., Bioorg. Khim., 2009, vol. 35, no. 5, pp. 640–645.PubMedGoogle Scholar
  21. 21.
    Savic, S., Vojinovic, K., Milenkovic, S., Smelcerovic, A., Lamshoeft, M., and Petronijevic, Z., Food Chem., 2013, vol. 141, no. 4, pp. 4194–4199.CrossRefPubMedGoogle Scholar
  22. 22.
    Savic, S.R. and Petronijevic, Z.B., Indian J. Biochem. Biophys., 2013, vol. 50, no. 3, pp. 221–226.PubMedGoogle Scholar
  23. 23.
    Varfolomeev, S.D. and Gurevich, K.G., Biokinetika (Biokinetics), Moscow Fair–press, 1999.Google Scholar
  24. 24.
    Szultka, M., Papaj, K., Rusin, A., Szeja, W., and Buszewski, B., Trend. Anal. Chem., 2013, vol. 47, no. 1, pp. 47–67.CrossRefGoogle Scholar
  25. 25.
    Wach, A., Pyrzynska, K., and Biesaga, M., Food Chem., 2007, vol. 100, no. 2, pp. 699–704.CrossRefGoogle Scholar
  26. 26.
    Makrisa, D.P. and Rossiterb, J.T., Food Chem., 2002, vol. 77, no. 2, pp. 177–185.CrossRefGoogle Scholar
  27. 27.
    Zhou, A. and Omowunmi, A.S., J. Agric. Food Chem., 2008, vol. 56, no. 24, pp. 12081–12091.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • M. E. Barsukova
    • 1
  • A. I. Tokareva
    • 1
  • T. S. Buslova
    • 1
  • L. I. Malinina
    • 1
  • I. A. Veselova
    • 1
  • T. N. Shekhovtsova
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations