Advertisement

Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 230–236 | Cite as

Autoclaved mycelium induces efficiently the production of hydrolytic enzymes for protoplast preparation of autologous fungus

  • M. Aloulou-Abdelkefi
  • H. Trigui-Lahiani
  • A. Gargouri
Article
  • 49 Downloads

Abstract

The production of hydrolytic enzymes by the mutant Trichoderma reesei Rut-C30 when cultivated in the presence of various carbon sources: glucose, wheat bran and autoclaved mycelium of Penicillium occitanis CT1 has been studied. Glucose was shown to repress all studied hydrolases, 3% of either wheat bran or autoclaved cell walls led to high titers of enzymes, and were favorably comparable to commercial lysing enzymes (LE). The lysing enzyme cocktail obtained when T. reesei Rut-C30 was cultivated in the presence of autoclaved P. occitanis CT1 mycelia appeared to be a most effective for P. occitanis CT1 protoplast formation. Maximal yield of protoplasts reached 13 × 106 protoplasts/mL while commercial LE preparation released only 4 × 106 protoplasts/mL. The protoplast yield was affected also by the osmotic stabilizer, with KCl giving the best results. Our results suggest that to achieve the best protoplastization rate, the enzyme preparation should be obtained following induction by the autoclaved mycelium of the autologous fungus.

Keywords

cell wall degrading enzymes Trichoderma reesei zymogram fungal cell wall wheat bran protoplast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fontaine, T., Simenel, C., Dubreucq, G., Adam, O., Delepierre, M., Lemoine, J., et al., J. Biol. Chem., 2000, vol. 275, no. 36, pp. 27594–27607.PubMedGoogle Scholar
  2. 2.
    Pessoni, R.A.B., Freshour, G., Figueiredo-Ribeiro, R.C.L., Hahn, M.G., and Braga, M.R., Mycologia, 2005, vol. 97, no. 2, pp. 304–311.CrossRefPubMedGoogle Scholar
  3. 3.
    Leal, J. A., Gomez-Miranda, B., Prieto, A., Domenech, J., Ahrazem, O., and Bernabe, M., Mycol. Res., 1997, vol. 101, no. 10, pp. 1259–1264.CrossRefGoogle Scholar
  4. 4.
    Santos, A., Marquina, D., Leal, J.A., and Peinado, J.M., Appl. Environ. Microbiol., 2000, vol. 66, no. 5, pp.1809–1813.Google Scholar
  5. 5.
    Saloheimo, A., Henrissat, B., Hoffrén, A.M., Teleman, O., and Penttilä, M., Mol. Microbiol., 1994, vol. 13, no. 2, pp. 219–228.CrossRefPubMedGoogle Scholar
  6. 6.
    Kubicek, C.P., Messner, R., Gruber, F., Mach, R.L., and Kubicek-Pranz, E.M., Enzyme Microb. Tech., 1992, vol. 15, no. 2, pp. 90–99.CrossRefGoogle Scholar
  7. 7.
    Lynd, L., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., et al., Genome Biol., 2011, vol. 12, no. 4, p. R40.Google Scholar
  9. 9.
    Gruber, S G. and Seidl-Seiboth, V., Microbiology, 2012, vol. 158, no. 1, pp. 26–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Kakoniova, D., Labudova I., and Liskova, D., Biotechnol. Lett., 1987, vol. 9, no. 10, pp. 721–724.CrossRefGoogle Scholar
  11. 11.
    Cocking, E.C., Nature, 1979, vol. 281, no. 5728, pp. 180–181.CrossRefGoogle Scholar
  12. 12.
    Eveleigh, D.E. and Montenecourt, B.S., Adv. Appl. Microbiol., 1979, vol. 25, pt. 1, pp. 57–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Hadj-Taieb, N., Ayadi, M., Trigui, S., Bouabdallah, F., and Gargouri, A., Enzyme Microb. Technol., 2002, vol. 30, no. 5, pp. 662–666.CrossRefGoogle Scholar
  14. 14.
    Mandels M., Weber J., and Parizek R., Appl Microbiol. 1971, vol. 21, no. 1, pp. 152–154.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Miller, G.L., Anal. Chem., 1959, vol. 31, no. 3, pp. 426–428.CrossRefGoogle Scholar
  16. 16.
    Saibi, W., Abdeljalil, S., and Gargouri, A., World J. Microb. Biot., 2011, vol. 27, no. 8, pp. 1765–1774.CrossRefGoogle Scholar
  17. 17.
    Cottrell, M. T., Wood, D. N., Yu, J. and Kirchman, D. L., Appl Environ. Microb., 2002, vol. 66, no. 10, pp. 1195–1201.Google Scholar
  18. 18.
    Bradford, M. M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.CrossRefPubMedGoogle Scholar
  19. 19.
    Laemmli, U. K. and Favre, M., J. Mol. Biol., 1973, vol. 80, no.4, pp. 575–592.CrossRefPubMedGoogle Scholar
  20. 20.
    De Vries, O.M.H. and Wessels, J.G.H., J. Gen. Microbiol., 1973, vol. 76, no. 1, pp. 319–330.CrossRefPubMedGoogle Scholar
  21. 21.
    Lora, J.M., De la Cruz, J., Llobell, A., Benitez, T., and Pintor-Toro, J.A., Mol. Gen. Genet., 1995, vol. 274, no. 5, pp. 639–645.CrossRefGoogle Scholar
  22. 22.
    Yang, H.H., Yang, S.L., Peng, K.C., and Liu, S.Y., Mycol. Res., 2009, vol. 113, pt. 9, pp. 924–932.CrossRefPubMedGoogle Scholar
  23. 23.
    Abdeljalil, S., Ben Hmad, I., Saibi, W., Amouri, B., Maalej, W., Kaaniche, M., Appl. Biochem. Biotechnol., 2014, vol. 172, no. 3, pp. 1599–1611.CrossRefPubMedGoogle Scholar
  24. 24.
    Hamlyn, P.F., Bradshaw, R.E., Mellon, F.M., Santiago, C.M., Wilson, J.M., and Peberdy, J.F., Enzyme Microb. Technol., 1981, vol. 3, no. 4, pp. 321–325.CrossRefGoogle Scholar
  25. 25.
    Peberdy J.F., Fungal Protoplasts, Applications in Biochemistry and Genetics, Peberdy, J.F. and Ferenczy, L., Eds., New York: CRC Press, 1985, pp. 45–71.Google Scholar
  26. 26.
    Kumari, D.L., Ind. Phytopathol., 1996, vol. 49, no. 3, pp. 199–212.Google Scholar
  27. 27.
    Zhou X., Wei Y., Zhu H., Wang Z., Lin J., Liu L. and Tang K., Afr. J. Biotechnol., 2008, vol. 7, no. 12, pp. 2017–2024.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • M. Aloulou-Abdelkefi
    • 1
  • H. Trigui-Lahiani
    • 1
  • A. Gargouri
    • 1
  1. 1.Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, PB1177University of SfaxSfaxTunisia

Personalised recommendations