Applied Biochemistry and Microbiology

, Volume 53, Issue 2, pp 267–272 | Cite as

Competition between redox mediator and oxygen in the microbial fuel cell

  • S. V. Alferov
  • S. V. Vozchikova
  • V. A. Arlyapov
  • V. A. Alferov
  • A. N. Reshetilov


The maximal rates and effective constants of 2,6-dichlorphenolindophenol and oxygen reduction by bacterim Gluconobacter oxydans in bacterial fuel cells under different conditions were evaluated. In an open-circuit mode, the rate of 2,6-dichlorphenolindophenol reduction coupled with ethanol oxidation under oxygen and nirogen atmospheres were 1.0 and 1.1 μM s–1 g–1, respectively. In closed-circuit mode, these values were 0.4 and 0.44 μM s–1 g–1, respectively. The initial rate of mediator reduction with the use of membrane fractions of bacteria in oxygen and nitrogen atmospheres in open-circuit mode were 6.3 and 6.9 μM s–1 g–1, whereas these values in closed-circuit mode comprised 2.2 and 2.4 μM s–1 g–1, respectively. The oxygen reduction rates in the presence and absence of 2,6-dichlorphenolindophenol were 0.31 and 0.32 μM s–1 g–1, respectively. The data obtained in this work demonstrated independent electron transfer from bacterial redox centers to the mediator and the absence of competition between the redox mediator and oxygen. The results can make it possible to reduce costs of microbial fuel cells based on activity of acetic acid bacteria G. oxydans.


microbial fuel cell acetic acid bacteria oxygen reduction mediator redution competition between redox mediator oxygen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., and Sang-Eun, Oh., Alexandria Engineering J., 2015, vol. 54, no. 3, pp. 745–756.CrossRefGoogle Scholar
  2. 2.
    Wang, L., Wang, C., Cao, X., Xiaona, Li., and Honghai, Yu., ECS Transactions, 2008, vol. 13, no. 21, pp. 43–50.CrossRefGoogle Scholar
  3. 3.
    Alferov, S.V., Voevodskaya, O.A., Nguen, V.T., Ponamoreva, O.N., and Reshetilov, A.N., Sens. Sist., 2011, vol. 25, no. 4, pp. 346–351.Google Scholar
  4. 4.
    Lapinsonniere, L., Picot, M., and Barriere, F., Chem. Sus. Chem., 2012, no. 5, pp. 995–1005.CrossRefGoogle Scholar
  5. 5.
    Osman, M.H., Shah, A.A., and Walsh, F.C., Biosens. Bioelectron., 2011, vol. 26, no. 7, pp. 3087–3102.CrossRefPubMedGoogle Scholar
  6. 6.
    Part, I.I., Microbial, M.H., Osman, ShahA.A., and Walsh, F.C., Biosens. Bioelectron., 2010, vol. 26, no. 3, pp. 953–963.CrossRefGoogle Scholar
  7. 7.
    Tkac, J., Svitel, J., Vostiar, I., Navratil, M., and Gemeiner, P., Bioelectrochemistry, 2009, vol. 76, nos. 1–2, pp. 53–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar, A., Katuri, K., Lens, P., and Leech, D., Biochem. Soc. Trans., 2012, vol. 40, no. 6, pp. 1308–1314.CrossRefPubMedGoogle Scholar
  9. 9.
    Indzhgiya, E., Ponamoreva, O.N., Alferov, V.A., Reshetilov, N.A., and Lo, G., Electroanalysis, 2012, vol. 24, no. 4, pp. 924–930.CrossRefGoogle Scholar
  10. 10.
    Reshetilov, A.N., Kitova, A.E., Kolesov, V.V., and Yaropolov, A.I., Electroanalysis, 2015, vol. 27, no. 6, pp. 1443–1448.CrossRefGoogle Scholar
  11. 11.
    Rosenbaum, M.A., Kotloski, N.J., Gralnick, J.A., and Angenent, L.T., Biotechnol. Bioeng., 2014, vol. 111, no. 4, pp. 692–699.CrossRefPubMedGoogle Scholar
  12. 12.
    Timonov, A.M., Soros. Obrazovat. Zh., 2000, vol. 6, no. 8, pp. 69–75.Google Scholar
  13. 13.
    Reshetilov, A.N., Alferov, S.V., Tomashevskaya, L.G., and Ponamoreva, O.N., Electroanalysis, 2006, vol. 18, nos. 19–20, pp. 2030–2034.CrossRefGoogle Scholar
  14. 14.
    Roller, S.D., Bennetto, H.P., and Delaney, G.M., et al., J. Chem. Technol. Biotechnol., 1984, vol. 34 B, pp. 13–27.Google Scholar
  15. 15.
    Alferov, S.V., Tomashevskaya, L.G., Ponamoreva, O.N., Bogdanovskaya, V.A., and Reshetilov, A.N., Elektrokhimiya, 2006, vol. 42, no. 4, pp. 456–457.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. V. Alferov
    • 1
  • S. V. Vozchikova
    • 1
  • V. A. Arlyapov
    • 1
  • V. A. Alferov
    • 1
  • A. N. Reshetilov
    • 1
    • 2
  1. 1.Tula State UniversityTulaRussia
  2. 2.Skryabin Institute for Biochemistry and Physiology of MicroorganismsPushchino, Moscow oblastRussia

Personalised recommendations