Modelling of Spatially Distributed Predator–Prey System with Periodically Migrating Predator (Case Study of the White Sea Intertidal Harpacticoids and Benthic Microalgae)

Abstract

A time-continuous, spatially discrete motile predator–immobile prey model has been developed to describe the interactions between harpacticoid copepods and benthic microalgae in the intertidal zone. Harpacticoids perform periodic and nondirectional migrations; the local intensity of these migrations is trophic-dependent, related to the ratio of real to maximum food consumption rates. The zero-dimensional (non-spatial) analog of the model has three nontrivial equilibrium states, two of which are stable: one corresponds to overgrazing (permanently low abundance of prey controlled by hungry predator); the second is “welfare” (well-fed predator and resource-limited prey). Simulations show that in the spatially distributed model with close-to-real parameter values, two regimes can be realized: either total overgrazing or a persistent heterogeneous dynamic regime with short-lived patches of both populations, similar to that observed in nature. The predator’s ability to migrate narrows the “welfare” domain in parametric space, but increases the trophic efficiency of the system: in this domain, both average prey abundance and average consumption rate for the predator are higher than without migrations. The migrating gain is larger in an environment that is spatially heterogeneous for prey. Assumption of local awareness of the predator (preferred migrations toward a high abundance of prey) has no significant effect on the state of the system.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    G. I. Abolmasova, “Feeding and the elements of energy balance of Gammarus olivii M.-Edw. from the Black Sea,” Biol. Morya (Kiev) 37, 41–45 (1976) [in Russian].

    Google Scholar 

  2. 2

    A. I. Azovsky and E. S. Chertoprud, “Spatio-temporal dynamics of the White Sea littoral harpacticoid community,” Oceanology (Engl. Transl.) 43, 103–111 (2003).

  3. 3

    V. E. Zaika, Comparative Productivity of hydrobionts (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  4. 4

    Yu. A. Mazei, I. V. Burkovskii, M. A. Saburova, et al., “Trophic structure of communities of psammophilic ciliates in the Chernaya River estuary,” Zool. Zh. 80 (11), 1283–1292 (2001) [in Russian, English summaty].

    Google Scholar 

  5. 5

    M. G. Sadovskii, M. Yu. Senashova, and P. A. Brychev, “A model of optimal migration of locally informed beings,” Dokl. Math. 80, 627–629 (2009).

    Article  Google Scholar 

  6. 6

    M. Yu. Senashova and M. G. Sadovskii, “Modeling the dynamics of a two-species community under the optimization migration and local awareness of individuals,” Fundam. Issled., No. 3-1, 50–54 (2014).

  7. 7

    L. M. Sushchenya, Respiration Intensity of Crustacean (Naukova Dumka, Kiev, 1972) [in Russian].

    Google Scholar 

  8. 8

    Yu. V. Tyutyunov, A. D. Zagrebneva, F. A. Surkov, and A. I. Azovsky, “Microscale patchiness of the distribution of copepods (Harpacticoida) as a result of trophotaxis,” Biophysics (Moscow) 54, 355–360 (2009).

    Article  Google Scholar 

  9. 9

    Yu. V. Tyutyunov, A. D. Zagrebneva, F. A. Surkov, and A. I. Azovsky, “Modeling of the population density flow for periodically migrating organisms,” Oceanology (Engl. Transl.) 50, 67–76 (2010).

  10. 10

    A. A. Udalov, I. V. Burkovskii, V. O. Mokievskii, et al., “Changes in the general characteristics of micro-, meio-, and macrobenthos along the salinity gradient in the White Sea estuary,” Oceanology (Engl. Transl.) 44, 514–525 (2004).

  11. 11

    E. S. Chertoprud and A. I. Azovsky, “Seasonal dynamics of the populations of intertidal harpacticoids (Harpacticoida: Copepoda) in the White Sea,” Oceanology (Engl. Transl.) 46, 71–80 (2006).

  12. 12

    E. S. Chertoprud, A. I. Azovsky, and F. V. Sapozhnikov, “Colonization of azoic sediments of different grain-size composition by littoral Harpacticoida: Copepoda,” Oceanology (Engl. Transl.) 45, 698–706 (2005).

  13. 13

    T. S. Abu-Rezq, A. B. Yule, and S. K. Teng, “Ingestion, fecundity, growth rates and culture of the harpacticoid copepod, Tisbe furcata, in the laboratory,” Hydrobiologia 347 (1), 109–118 (1997).

    Article  Google Scholar 

  14. 14

    W. Admiraal, “Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate,” Mar. Biol. 43 (4), 307–315 (1977).

    Article  Google Scholar 

  15. 15

    W. Admiraal, H. Peletier, and H. Zomer, “Observations and experiments on the population dynamics of epipelic diatoms from an estuarine mudflat,” Estuarine, Coastal Shelf Sci. 14 (5), 471–487 (1982).

    Article  Google Scholar 

  16. 16

    W. Admiraal and H. Peletier, “Influence of seasonal variations of temperature and light on the growth rate of cultures and natural populations of intertidal diatoms,” Mar. Ecol.: Prog. Ser. 2, 35–43 (1980).

    Article  Google Scholar 

  17. 17

    C. M. V. Araujo-Castro and L. P. Souza-Santos, “Are the diatoms Navicula sp. and Thalassiosira fluviatilis suitable to be fed to the benthic harpacticoid copepod Tisbe biminiensis?” J. Exp. Mar. Biol. Ecol. 327 (1), 58–69 (2005).

    Article  Google Scholar 

  18. 18

    A. I. Azovsky, E. S. Chertoprood, M. A. Saburova, and I. G. Polikarpov, “Spatio-temporal variability of micro-and meiobenthic communities in the White Sea intertidal sandflat,” Estuarine, Coastal Shelf Sci. 60 (4), 663–671 (2004).

    Article  Google Scholar 

  19. 19

    A. I. Azovsky, M. A. Saburova, E. S. Chertoprood, and I. G. Polikarpov, “Selective feeding of littoral harpacticoids on diatom algae: hungry gourmands jump to survive?” in Proceedings of X European Ecological Congress (Eureco’05), Kusadasi, Turkey (META Press, Izmir, 2005), p. 96.

  20. 20

    A. I. Azovsky, M. A. Saburova, E. S. Chertoprood, and I. G. Polikarpov, “Selective feeding of littoral harpacticoids on diatom algae: hungry gourmands?” Mar. Biol. 148, 327–337 (2005).

    Article  Google Scholar 

  21. 21

    A. I. Azovsky, E. S. Chertoprood, M. A. Saburova, and I. G. Polikarpov, “Spatio-temporal variability of micro- and meiobenthic communities in the White Sea intertidal sandflat,” Estuarine, Coastal Shelf Sci. 60 (4), 663–671 (2004).

    Article  Google Scholar 

  22. 22

    A. Basset, M. Fedele, and D. L. DeAngelis, “Optimal exploitation of spatially distributed trophic resources and population stability,” Ecol. Model. 151 (2–3), 245–260 (2002).

    Article  Google Scholar 

  23. 23

    C. Bernstein, P. Auger, and J. Christophe, “Predator migration decisions, the ideal free distribution, and predator-prey dynamics,” Am. Nat. 153 (3), 267–281 (1999).

    Article  Google Scholar 

  24. 24

    G. F. Blanchard, “Measurement of meiofauna grazing rates on microphytobenthos: is primary production a limiting factor?” J. Exp. Mar. Biol. Ecol. 147 (1), 37–46 (1991).

    Article  Google Scholar 

  25. 25

    G. F. Blanchard, “Overlapping microscale dispersion patterns of meiofauna and microphytobenthos,” Mar. Ecol.: Prog. Ser. 68 (1–2), 101–111 (1990).

    Article  Google Scholar 

  26. 26

    K. R. Carman, J. W. Fleeger, and S. M. Pomarico, “Response of a benthic food web to hydrocarbon contamination,” Limnol. Oceanogr. 42 (3), 561–571 (1997).

    Article  Google Scholar 

  27. 27

    Decho A. W. and J. W. Fleeger, “Microscale dispersion of meiobenthic copepods in response to food-resource patchiness,” J. Exp. Mar. Biol. Ecol. 118 (3), 229–243 (1988).

    Article  Google Scholar 

  28. 28

    J. W. Fleeger, M. A. Palmer, and E. B. Moser, “On the scale of aggregation of meiobenthic copepods on a tidal mudflat,” Mar. Ecol. 11 (3), 227–237 (1990).

    Article  Google Scholar 

  29. 29

    J. W. Fleeger and A. W. Decho, “Spatial variability of interstitial meiofauna: a review,” Stygologia 3 (1), 35–54 (1987).

    Google Scholar 

  30. 30

    M. R. Garvie and M. Golinski, “Metapopulation dynamics for spatially extended predator–prey interactions,” Ecol. Complex 7 (1), 55–59 (2010).

    Article  Google Scholar 

  31. 31

    M. P. Hassell, J. H. Lawton, and J. R. Beddington, “Sigmoid functional responses by invertebrate predators and parasitoids,” J. Anim. Ecol. 46 (1), 249–262 (1977).

    Article  Google Scholar 

  32. 32

    C. Hauzy, M. Gauduchon, F. D. Hulot, and M. Loreau, “Density-dependent dispersal and relative dispersal affect the stability of predator-prey meta-communities,” J. Theor. Biol. 266 (3), 458–469 (2010).

    Article  Google Scholar 

  33. 33

    G. R. Hicks, “The ecology of marine meiobenthic harpacticoid copepods,” Oceanogr. Mar. Biol. Ann. Rev. 21, 67–175 (1983).

    Google Scholar 

  34. 34

    R. Mac Nally, “Modeling confinement experiments in community ecology: differential mobility among competitors,” Ecol. Model. 129 (1), 65–85 (2000).

    Article  Google Scholar 

  35. 35

    P. A. Montagna, “Rates of metazoan meiofaunal microbivory: a review,” Vie Milieu 45 (1), 1–10 (1995).

    Google Scholar 

  36. 36

    I. Noy-Meir, “Stability of grazing systems: an application of predator-prey graphs,” J. Ecol. 63 (2), 459–481 (1975).

    Article  Google Scholar 

  37. 37

    J. Reiss and J. M. Schmid-Araya, “Feeding response of a benthic copepod to ciliate prey type, prey concentration and habitat complexity,” Freshwater Biol. 56 (8), 1519–1530 (2011).

    Article  Google Scholar 

  38. 38

    G. Sach and H. Bernem, “Spatial patterns of Harpacticoida copepods on tidal flats,” Senchenberg. Mar. 26 (3–6), 97–10 (1996).

  39. 39

    B. Sun and J. W. Fleeger, “Spatial and temporal patterns of dispersion in meiobenthic copepods,” Mar. Ecol.: Prog. Ser. 71, 1–11 (1991).

    Article  Google Scholar 

  40. 40

    B. Sun, J. W. Fleeger, and R. S. Carney, “Sediment microtopography and the small-scale spatial distribution of meiofauna,” J. Exp. Mar. Biol. Ecol. 167 (1), 73–90 (1993).

    Article  Google Scholar 

  41. 41

    R. B. Williams, “Division rates of salt marsh diatoms in relation to salinity and cell size,” Ecology 45 (4), 877–880 (1964).

    Article  Google Scholar 

  42. 42

    D. R. Woods and J. H. Tietjen, “Horizontal and vertical distribution of meiofauna in the Venezuela Basin,” Mar. Geol. 68 (1–4), 233–241 (1985).

    Article  Google Scholar 

  43. 43

    J. Yen, “Effects of prey concentration, prey size, predator life stage, predator starvation, and season on predation rates of the carnivorous copepod Euchaeta elongate,” Mar. Biol. 75 (1), 69–77 (1983).

    Article  Google Scholar 

  44. 44

    V. E. Zaika, “Some remarks about primary production of benthic diatoms,” in Colloque Franco-Sovietique “Production Primaire et Secondaire” (Centre National pour l’Exploitation des Océans, Paris, 1980), Vol. 10.

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project nos. 17-04-00337, 18-04-00206).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Azovsky.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.A., Azovsky, A.I. Modelling of Spatially Distributed Predator–Prey System with Periodically Migrating Predator (Case Study of the White Sea Intertidal Harpacticoids and Benthic Microalgae). Oceanology 60, 89–97 (2020). https://doi.org/10.1134/S000143702001021X

Download citation

Keywords:

  • modeling
  • predator–prey
  • migrations
  • dynamics
  • spatial heterogeneity
  • harpacticoids
  • microphytobenthos