Winter Currents Velocity and Sea Surface Temperature Anomalies Accompanying the Gulf Stream North Wall Displacements

Abstract

Based on average monthly data of the ORAS4 ocean reanalysis, the spatial distribution and values of anomalies of the ocean surface temperature and the velocity of surface currents occurring in the North Atlantic at the meridional displacements of the north wall of the Gulf Stream in January–February are determined. Gulf Stream North Wall Index data are used as data on Gulf Stream movements. The spatial distributions of anomalies corresponding to the northern and southern positions of the North Wall are based on averaging the fields of ocean surface temperature and the velocity of currents corresponding to each phase of the Gulf Stream North Wall index. It has been revealed that for meridional displacements of the North Wall of the Gulf Stream, statistically significant anomalies of the modulus of current velocity (0.03 m/s) and ocean surface temperature (1°C) are not only in the area of the Wall, but also along the entire northern boundary of the Gulf Stream. Here the value of the correlation coefficient of velocity time series with the Gulf Stream North Wall index is 0.56. As for temperature, the same coefficient is 0.50. Significant temperature anomalies (0.3°C) are found off the coast of the Iberian Peninsula and in the central part of the subtropical gyre. The values of the correlation coefficients of time series of the surface temperature and the index of the Gulf Stream in these areas are 0.48 and 0.53 respectively.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    G. V. Alekseev, N. I. Glok, A. V. Smirnov, and A. E. Vyazilova, “The influence of the North Atlantic on climate variations in the Barents Sea and their predictability,” Russ. Meteorol. Hydrol. 41, 544–558 (2016).

    Article  Google Scholar 

  2. 2

    L. N. Karlin, V. N. Malinin, and S. M. Gordeeva, “Variability of hydrophysical characteristics in the Gulf Stream,” Oceanology (Engl. Transl.) 53, 401–409 (2013).

  3. 3

    A. M. Fedorov, A. A. Kubryakov, and T. V. Belonenko, “Long-term changes of large-scale circulation in Northern Atlantic based on satellite altimetry measurements,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 14 (7), 225–237 (2017).

    Article  Google Scholar 

  4. 4

    M. Andres, “On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras,” Geophys. Res. Lett. 43 (18), 9836–9842 (2016).

    Article  Google Scholar 

  5. 5

    M. A. Balmaseda, K. Mogensen, and A. T. Weaver, “Evaluation of the ECMWF ocean reanalysis system ORAS4,” Q. J. R. Meteorol. Soc. 139 (674), 1132–1161 (2013).

    Article  Google Scholar 

  6. 6

    D. G. Borkman and T. J. Smayda, “Gulf Stream position and winter NAO as drivers of long-term variations in the bloom phenology of the diatom Sceletonema costatum “species complex” in Narragansett Bay, RI, USA,” J. Plankton Res. 31 (11), 1407–1425 (2009).

    Article  Google Scholar 

  7. 7

    R. G. Curry and M. S. McCartney, “Ocean Gyre Circulation changes associated with the North Atlantic Oscillation,” J. Phys. Oceanogr. 31, 3374–3400 (2001).

    Article  Google Scholar 

  8. 8

    X. J. Davis, T. M. Joyce, and Y. O. Kwon, “Prediction of silver hake distribution on the Northeast US shelf based on the Gulf Stream path index,” Cont. Shelf Res. 138, 51–64 (2017).

    Article  Google Scholar 

  9. 9

    E. G. Dawe, E. B. Colbourne, and K. F. Drinkwater, “Environmental effects on recruitment of short-finned squid (Illex illecebrosus),” ICES J. Mar. Sci. 57, 1002–1013 (2000).

    Article  Google Scholar 

  10. 10

    S. Dong and K. A. Kelly, “Heat budget in the Gulf Stream region: the importance of heat storage and advection,” J. Phys. Oceanogr. 34 (5), 1214–1231 (2004).

    Article  Google Scholar 

  11. 11

    K. F. Drinkwater, “Atmospheric and sea-ice conditions in the northwest Atlantic during the decade, 1991–2000,” J. Northw. Atl. Fish. Sci. 34, 1–11 (2004).

    Article  Google Scholar 

  12. 12

    G. S. Dvoryaninov, A. A. Kubryakov, A. A. Sizov, et al., “The North Atlantic oscillation: a dominant factor in variations of oceanic circulation systems of the Atlantic Ocean,” Dokl. Earth Sci. 466, 100–104 (2016).

    Article  Google Scholar 

  13. 13

    C. Frankignoul, G. de Coetlogon, T. M. Joyce, and S. F. Dong, “Gulf Stream variability and ocean–atmosphere interactions,” J. Phys. Oceanogr. 31, 3516–3529 (2001).

    Article  Google Scholar 

  14. 14

    A. Gangopadhyay, A. H. Chaudhuri, and A. H. Taylor, “On the nature of temporal variability of the Gulf Stream Path from 75° to 55° W,” Earth Interact. 20 (9), 1–17 (2016).

    Article  Google Scholar 

  15. 15

    S. Hammed and S. Piontkovski, “The dominant influence of the Icelandic Low on the position of the Gulf Stream north wall,” Geophys. Res. Lett. 31 (9), L09303–L09303 (2004).

    Google Scholar 

  16. 16

    M. E. Huntley and M. D. G. Lopez, “Temperature-dependent production of marine copepods: a global synthesis,” Am. Nat. 140 (2), 201–242 (1992).

    Article  Google Scholar 

  17. 17

    T. M. Joyce, C. Deser, and M. A. Spall, “The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation,” J. Clim. 13 (14), 2550–2569 (2000).

    Article  Google Scholar 

  18. 18

    D. Kang and E. N. Curchitser, “Gulf Stream eddy characteristics in a high-resolution ocean model,” J. Geophys. Res.: Oceans 118 (9), 4474–4487 (2013).

    Article  Google Scholar 

  19. 19

    A. Kuwano-Yoshida, S. Minobe, and S. P. Xie, “Precipitation response to the Gulf Stream in an atmospheric GCM,” J. Clim. 23 (13), 3676–3698 (2010).

    Article  Google Scholar 

  20. 20

    T. Lee and P. Cornillon, “Propagation and growth of Gulf Stream meanders between 75° and 45°W,” J. Phys. Oceanogr. 26, 225–241 (1996).

    Article  Google Scholar 

  21. 21

    K. Mogensen, M. A. Balmaseda, and A. Weaver, The NEMOVAR Ocean Data Assimilation System as Implemented in the ECMWF Ocean Analysis for System 4, Technical Memorandum no. 668 (European Centre for Medium-Range Weather Forecasts, Toulouse, 2012).

  22. 22

    A. D. Nunn, J. P. Harvey, J. R. Britton, et al., “Fish, climate and the Gulf Stream: the influence of abiotic factors on the recruitment success of cyprinid fishes in lowland rivers,” Freshwater Biol. 52 (8), 1576–1586 (2007).

    Article  Google Scholar 

  23. 23

    J. A. Nye, T. M. Joyce, Y. O. Kwon, et al., “Silver hake tracks changes in Northwest Atlantic circulation,” Nat. Commun. 2, 412 (2011).

    Article  Google Scholar 

  24. 24

    B. Peña-Molino and T. M. Joyce, “Variability in the slope water and its relation to the Gulf Stream path,” Geophys. Res. Lett. 35 (3), L03606 (2008). https://doi.org/10.1029/2007GL032183

    Article  Google Scholar 

  25. 25

    M. D. Pérez-Hernández and T. M. Joyce, “Two modes of Gulf Stream variability revealed in the last two decades of satellite altimeter data,” J. Phys. Oceanogr. 44, 149–163 (2014).

    Article  Google Scholar 

  26. 26

    I. Peterson, B. Greenan, D. Gilbert, et al., “Variability and wind forcing of ocean temperature and thermal fronts in the slope water region of the Northwest Atlantic,” J. Geophys. Res.: Oceans 122 (9), 7325–7343 (2017).

    Article  Google Scholar 

  27. 27

    I. V. Polyakov, V. A. Alexeev, U. S. Bhatt, et al., “North Atlantic warming: patterns of long-term trend and multidecadal variability,” Clim. Dyn. 34 (2–3), 439–457 (2010).

    Article  Google Scholar 

  28. 28

    T. Rossby and R. L. Benway, “Slow variations in mean path of the Gulf Stream east of Cape Hatteras,” Geophys. Res. Lett. 27 (1), 117–120 (2000).

    Article  Google Scholar 

  29. 29

    T. Rossby, C. N. Flagg, and K. Donohue, “Interannual variations in upper ocean transport by the Gulf Stream and adjacent waters between New Jersey and Bermuda,” J. Mar. Res. 63, 203–226 (2005).

    Article  Google Scholar 

  30. 30

    T. Rossby, C. N. Flagg, K. Donohue, et al., “On the long-term stability of Gulf Stream transport based on 20 years of direct measurements,” Geophys. Res. Lett. 41 (1), 114–120 (2014).

    Article  Google Scholar 

  31. 31

    R. Seager, D. S. Battisti, J. Yin, et al., “Is the Gulf Stream responsible for Europe’s mild winters?” Q. J. R. Meteorol. Soc. 128 (586), 2563–2586 (2002).

    Article  Google Scholar 

  32. 32

    A. Sunchez-Franks, S. Hameed, and R. E. Wilson, “The Icelandic Low as a predictor of the Gulf Stream north wall position,” J. Phys. Oceanogr. 46, 817–826 (2016).

    Article  Google Scholar 

  33. 33

    A. H. Taylor, “North–South shifts of the Gulf Stream and their climatic connection with the abundance of zooplankton in the UK and its surrounding seas,” J. Mar. Sci. 52 (3–4), 711–721 (1995).

    Google Scholar 

  34. 34

    A. H. Taylor and J. A. Stephens, “Latitudinal displacements of the Gulf Stream (1966 to 1977) and their relation to changes in temperature and zooplankton abundance in the NE Atlantic,” Oceanol. Acta 3, 145–149 (1980).

    Google Scholar 

  35. 35

    A. H. Taylor and J. A. Stephens, “The North Atlantic oscillation and the latitude of the Gulf Stream,” Tellus A 50 (1), 134–142 (1998).

    Article  Google Scholar 

  36. 36

    H. J. Thiébaux, Statistical Data Analysis for Ocean and Atmospheric Sciences (Elsevier, Amsterdam, 1994).

    Google Scholar 

Download references

Funding

The study was carried out with the state task of the Kovalevsky Institute of Biology of Southern Seas, Russian Academy of Sciences (RAS) (topic no. АААА-А18-118021490093-4 “Functional, Metabolic, and Toxicological Aspects of the Existence of Hydrobionts and Their Populations in Biotopes with Different Physical and Chemical Regimes”) and the Marine Hydrophysical Institute RAS (topic no. 0827-2018-0001 “Fundamental Studies of Interaction Processes in the Ocean-Atmosphere System That Determine Regional Spatial and Temporal Variability of the Natural Environment and Climate”).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. B. Krasheninnikova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krasheninnikova, S.B., Shokurova, I.G. & Shokurov, M.V. Winter Currents Velocity and Sea Surface Temperature Anomalies Accompanying the Gulf Stream North Wall Displacements. Oceanology 60, 20–28 (2020). https://doi.org/10.1134/S0001437020010154

Download citation

Keywords:

  • North Atlantic
  • Gulf Stream North Wall index
  • ocean surface temperature
  • current velocity