Validating Ocean Wind Wave Global Hindcast with Visual Observations from VOS


Joint analysis of wind wave characteristics derived from Voluntary Observing Ships data (VOS) and the third-generation spectral wave model WAVEWATCH III v.5.16 hindcast is presented. Global distributions of significant wave heights and mean periods in both datasets demonstrate good qualitative and quantitative agreement, especially in regions with a high spatiotemporal density of observations. Simulation results and visually observed wind sea and swell show perfectly consistent patterns of directional steadiness. However, wind sea heights in WW3 are overestimated predominantly in stormy regions, while swell heights are globally underestimated. The reasons for these discrepancies in assessment of wave system components are investigated in the framework of various wave regime analyses.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    V. G. Grigorieva, Candidate’s Dissertation in Physics-Mathematics (Moscow, 2006).

  2. 2

    V. G. Grigorieva and S. I. Badulin, “Wind wave characteristics based on visual observations and satellite altimetry,” Oceanology (Engl. Transl.) 56, 19–24 (2016).

  3. 3

    V. G. Grigorieva, S. K. Gulev, and A. V. Gavrikov, “Global historical archive of wind waves based on voluntary observing ship data,” Oceanology (Engl. Transl.) 57, 229–231 (2017).

  4. 4

    O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, et al., Complex Satellite Monitoring of Russian Seas (Russian Space Research Institute, Russian Academy of Sciences, Moscow, 2011) [in Russian].

    Google Scholar 

  5. 5

    M. Yu. Markina and A. V. Gavrikov, “Wave climate variability in the North Atlantic in recent decades in the winter period using numerical modeling,” Oceanology (Engl. Transl.) 56, 320–325 (2016).

  6. 6

    F. Ardhuin, W. E. Rogers, A. V. Babanin, et al., “Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation,” J. Phys. Oceanogr. 40, 1917–1941 (2010).

    Article  Google Scholar 

  7. 7

    F. Ardhuin, J. E. Stopa, B. Chapron, et al., “Observing sea states,” Front. Mar. Sci. 6, 361 (2019).

    Article  Google Scholar 

  8. 8

    A. V. Babanin and H. Jiang, “Ocean swell: How much do we know,” in Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore, and Arctic Engineering (OMAE2017) (Trondheim, 2017), Vol. 3A, p. 8. ISBN 978-0-7918-5765-6

  9. 9

    S. I. Badulin and V. G. Grigorieva, “On discriminating swell and wind-driven seas in voluntary observing ship data,” J. Geophys. Res.: Oceans 117, 1–13 (2012).

    Article  Google Scholar 

  10. 10

    J. Bidlot, P. Janssen, and S. Abdalla, A Revised Formulation for Ocean Wave Dissipation and Its Model Impact, ECMWF Technical Memorandum no. 509 (European Centre for Medium-Range Weather Forecasts, Reading, 2007).

  11. 11

    S. Caires, A. Sterl, J.-R. Bidlot, et al., “Intercomparison of different wind–wave re-analyses,” J. Clim. 17 (10), 1893–1913 (2004).

    Article  Google Scholar 

  12. 12

    L. Cavaleri, J.-H. G. M. Alves, F. Ardhuin, et al., “Wave modeling—The state of the art,” Progr. Oceanogr. 75 (4), 603–674 (2007).

    Article  Google Scholar 

  13. 13

    G. Chen, B. Chapron, R. Ezraty, and D. Vandemark, “A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer,” J. Atmos. Ocean. Technol. 19, 1849–1859 (2002).

    Article  Google Scholar 

  14. 14

    E. Freeman, S. D. Woodruff, S. J. Worley, S. J. Lubker, et al., “ICOADS release 3.0: a major update to the historical marine climate record,” Int. J. Climatol. 37 (5), 2211–2232 (2017).

    Article  Google Scholar 

  15. 15

    R. Gelaro, W. McCarty, M. J. Suárez, et al., “The modern-era retrospective analysis for research and applications, version 2 (MERRA-2),” J. Clim. 30 (14), 5419–5454 (2017).

    Article  Google Scholar 

  16. 16

    S. K. Gulev, V. Grigorieva, A. Sterl, and D. Woolf, “Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data,” J. Geophys. Res.: Oceans Atmos. 108 (7), 3236–3257 (2003).

    Article  Google Scholar 

  17. 17

    S. K. Gulev and L. Hasse, “North Atlantic wind waves and wind stress fields from voluntary observing data,” J. Phys. Oceanogr. 28 (6), 1107–1130 (1998).

    Article  Google Scholar 

  18. 18

    S. K. Gulev and L. Hasse, “Changes of wind waves in the North Atlantic over the last 30 years,” Int. J. Climatol. 19, 1091–1018 (1999).

    Article  Google Scholar 

  19. 19

    J. L. Hanson and O. M. Phillips, “Wind sea growth and dissipation in the open ocean,” J. Phys. Oceanogr. 29 (8), 1633–1648 (1999).

    Article  Google Scholar 

  20. 20

    K. Hasselmann, “On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. General theory,” J. Fluid Mech. 12 (4), 481–500 (1962).

    Article  Google Scholar 

  21. 21

    S. Hasselmann and K. Hasselmann, “Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral,” J. Phys. Oceanogr. 15 (11), 1369–1377 (1985).

    Article  Google Scholar 

  22. 22

    S. Hasselmann, K. Hasselmann, J. H. Allender, and T. P. Barnett, “Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models,” J. Phys. Oceanogr. 15 (11), 1378–1391 (1985).

    Article  Google Scholar 

  23. 23

    E. C. Kent, N. A. Rayner, and D. I. Berry, et al., “Observing requirements for long-term climate records at the ocean surface,” Front. Mar. Sci. 6, 441 (2019).

    Article  Google Scholar 

  24. 24

    G. J. Komen, L. Cavaleri, M. Donelan, et al., Dynamics and Modeling of Ocean Waves (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  25. 25

    M. Markina, A. Gavrikov, S. Gulev, and B. Barnier, “Developing configuration of WRF model for long-term high-resolution wind wave hindcast over the North Atlantic with WAVEWATCH III,” Ocean Dyn. 68, 1593–1604 (2018).

    Article  Google Scholar 

  26. 26

    W. J. Pierson and L. Moskowitz, “A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii,” J. Geophys. Res. 69 (24), 5181–5190 (1964).

    Article  Google Scholar 

  27. 27

    J. Portilla, F. O. Torres, and J. Monbaliu, “Spectral partitioning and identification of wind sea and swell,” J. Atmos. Ocean. Technol. 26, 107–122 (2009).

    Article  Google Scholar 

  28. 28

    W. E. Rogers, A. V. Babanin, and D. W. Wang, “Observation-consistent input and white-capping dissipation in a model for wind-generated surface waves: description and simple calculations,” J. Atmos. Ocean. Technol. 29 (9), 1329–1346 (2012).

    Article  Google Scholar 

  29. 29

    M. A. Srokosz and P. G. Challenor, “Joint distribution of wave height and period: a critical comparison,” Ocean Eng. 14 (4), 295–311 (1987).

    Article  Google Scholar 

  30. 30

    J. E. Stopa, “Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets,” Ocean Model. 127, 55–69 (2018).

    Article  Google Scholar 

  31. 31

    J. E. Stopa, F. Ardhuin, A. V. Bababin, and S. Zieger, “Comparison and validation of physical wave parameterizations in spectral wave models,” Ocean Model. 103, 2–17 (2016).

    Article  Google Scholar 

  32. 32

    J. E. Stopa and K. F. Cheung, “Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis,” Ocean Model. 75, 65–83 (2014).

    Article  Google Scholar 

  33. 33

    WAVEWATCH III® Development Group (WW3DG), User Manual and System Documentation of WAVEWATCH III® Version 5.16 (NOAA/NWS/NCEP/MMAB, College Park, MD, 2016).

  34. 34

    N. Violante-Carvalho, C. E. Parente, I. S. Robinson, and L. M. P. Nunes, “On the growth of wind generated waves in a swell dominated region in the South Atlantic,” J. Offshore Mech. Arct. Eng. 124, 14–21 (2002).

    Article  Google Scholar 

  35. 35

    D. W. Wang and P. A. Hwang, “An operational method for separating wind sea and swell from ocean wave spectra,” J. Atmos. Ocean. Technol. 18 (12), 2052–2062 (2001).

    Article  Google Scholar 

  36. 36

    I. R. Young and T. J. Glowacki, “Assimilation of altimeter wave height data into a spectral wave model using statistical interpolation,” Ocean Eng. 23 (8), 667–689 (1996).

    Article  Google Scholar 

Download references


The authors are deeply thankful to A.V. Gavrikov and S.I. Badulin for their educated advice and extensive feedback for the whole process of creating this paper.

The authors are grateful to the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing open access to the ERA-5 reanalysis data. (https://!/dataset/reanalysis-era5-single-levels?tab=overview).


The study was supported by a grant from the Ministry of Science and Higher Education of the Russian Federation (agreement no 14.613.21.0083, unique project identifier RFMEFI61317X0083).

Author information



Corresponding authors

Correspondence to V. G. Grigorieva or S. K. Gulev or V. D. Sharmar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grigorieva, V.G., Gulev, S.K. & Sharmar, V.D. Validating Ocean Wind Wave Global Hindcast with Visual Observations from VOS. Oceanology 60, 9–19 (2020).

Download citation


  • wind waves
  • swell
  • visual wave observations
  • spectral wave model WAVEWATCH III
  • global wave characteristics