Skip to main content
Log in

Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The spectrum of the Dirichlet problem on the planar square lattice of thin quantum waveguides has a band-gap structure with short spectral bands separated by wide spectral gaps. The curving of at least one of the ligaments of the lattice generates points of the discrete spectrum inside gaps. A complete asymptotic series for the eigenvalues and eigenfunctions are constructed and justified; those for the eigenfunctions exhibit a remarkable behavior imitating the rapid decay of the trapped modes: the terms of the series have compact supports that expand unboundedly as the number of the term increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Kuchment, “Floquet theory for partial differential equations,” Uspekhi Mat. Nauk 37 (4 (226)), 3–52 (1982) [Russian Math. Surveys 37 (4), 1–60 (1982)].

    MathSciNet  MATH  Google Scholar 

  2. M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators,” in Trudy Mat. Inst. Steklova (MIAN, Moscow, 1985), Vol. 171, pp. 3–122 [Proc. Steklov Inst. Math. 171, 1–121 (1987)].

    Google Scholar 

  3. P. Kuchment, Floquet Theory for Partial Differential Equations, in Oper. Theory Adv. Appl. (Birchäuser, Basel, 1993), Vol. 60.

    Book  MATH  Google Scholar 

  4. S. A. Nazarov, “The spectra of rectangular lattices of quantum waveguides,” Izv. Ross. Akad. Nauk Ser. Mat. 81 (1), 31–92 (2017) [Izv. Math. 81 (1), 29–90 (2017)].

    MathSciNet  Google Scholar 

  5. R. L. Shult, D. G. Ravenhall, and H. D. Wyld, “Quantum bound states in a classically unbound system of crossed wires,” Phys. Rev. B 39, 5476–5479 (1989).

    Article  Google Scholar 

  6. Y. Avishai, D. Bessis, B. G. Giraud, and G. Mantica, “Quantum bound states in open geometries,” Phys. Rev. B 440, 8028–8034 (1991).

    Article  Google Scholar 

  7. S. A. Nazarov, “Discrete spectrum of cross-shaped quantum waveguides,” Probl. Math. Anal. 73, 101–127 (2013) [J. Math. Sci. (N. Y.) 196 (3) (2014)].

    Google Scholar 

  8. A. Figotin and A. Klein, “Midgap defect modes in dielectric and acoustic media,” SIAM J. Appl. Math. 58 (6), 1748–1773 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Ammari and F. Santosa, “Guided waves in a photonic band-gap structure with a line defect,” SIAM J. Appl. Math. 64 (6), 2018–2033 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Miao and F. Ma, “On guided waves created by line defects,” J. Stat. Phys. 130 (6), 1197–1215 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. M. Brown, V. Hoang, M. Plum and I. Wood, “Spectrum created by line defects in periodic structures,” Math. Nachr. 287 (17–18), 1972–1985 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. S.A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder,” Zh. Vychisl. Mat. Mat. Fiz. 54 (8), 1299–1318 (2014) [Comput. Math. Math. Phys. 54 (8), 1261–1279 (2014)].

    MathSciNet  MATH  Google Scholar 

  13. B. Delourme, S. Fliss, P. Joly, and E. Vasilevskayan, “Trapped modes in thin and infinite ladder-like domains. Part 1: Existence results,” Asymptot. Anal. 103 (3), 103–134 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Nazarov, “Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues,” Algebra Anal. 28 (3), 111–160 (2016) [St. Petersburg Math. J. 28 (3), 377–410 (2016)].

    MathSciNet  Google Scholar 

  15. S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotic expansion,” Comm. Math. Phys. 273 (2), 533–559 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, in De Gruyter Exp. Math. (Walter de Gruyter, Berlin, 1994), Vol. 13.

    Book  MATH  Google Scholar 

  17. S. A. Nazarov, “Conjugation conditions in the one-dimensional model of the rectangular lattice of thin quantum waveguides,” Probl. Math. Anal. 87 (3), 153–173 (2018).

    Google Scholar 

  18. D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. (3) 97 (3), 718–752 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Pauling, “The diamagnetic anisotropy of aromatic molecules,” J. Chem. Phys. 4, 672–678 (1936).

    Google Scholar 

  20. M. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic Press, New York-London, 1964; Mir, Moscow, 1967).

    MATH  Google Scholar 

  21. A. M. Il’in, Matching Asymptotic Expansions of Solutions of Boundary-Value Problems (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  22. V. Maz’ya, S. Nazarov, and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary-Value Problems in Singularly Perturbed Domains (Birkhauser, Basel, 2000), Vol. I, II.

    Book  Google Scholar 

  23. M. I. Vishik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Uspekhi Mat. Nauk 12 (5(77)), 3–122 (1957).

    MathSciNet  MATH  Google Scholar 

  24. M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in a Hilbert Space (Izd. Leningr. Univ., Leningrad, 1980) [in Russian].

    Google Scholar 

  25. O. Post, “Spectral Analysis on Graph-Like Spaces,” in Lecture Notes in Math. (Springer, Heidelberg, 2012), Vol. 2039 [in Russian].

    Book  MATH  Google Scholar 

  26. S. A. Nazarov, “Discrete spectrum of cranked, branchy, and periodic waveguides,” Algebra Anal. 23 (2), 206–247 (2011) [St. Petersburg Math. J. 23 (2), 351–379 (2012)].

    Google Scholar 

  27. S. A. Nazarov, “Open waveguides in a thin Dirichlet lattice: II. Localized waves and radiation conditions,” Zh. Vychisl. Mat. Mat. Fiz. 57 (2), 237–254 (2017) [Comput. Math. Math. Phys. 57 (2), 236–252 (2017)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Asymptotics of the Eigenvalues and Eigenfunctions of a Thin Square Dirichlet Lattice with a Curved Ligament. Math Notes 105, 559–579 (2019). https://doi.org/10.1134/S0001434619030295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619030295

Keywords

Navigation