Mathematical Notes

, Volume 105, Issue 3–4, pp 513–518 | Cite as

Characterization of Locally Finite Simple Groups of Type G2 over Fields of Odd Characteristics in the Class of Periodic Groups

  • X. ZhuEmail author
  • D. V. LytkinaEmail author
  • V. D. MazurovEmail author


We prove that a periodic group is locally finite, given that each of its finite subgroups lies in a subgroup isomorphic to a finite simple group G2 of Lietypeovera field of odd characteristic.


periodic group locally finite group group of Lie type saturation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Carter, Simple Groups of Lie Type (John Wiley & Sons, London, 1972).zbMATHGoogle Scholar
  2. 2.
    V. V. Belyaev, “Locally Finite Chevalley Groups,” in Investigations in Group Theory (USC AS USSSR, Sverdlovsk, 1984), pp. 39–50 [in Russian].Google Scholar
  3. 3.
    A. V. Borovik, “Embeddings of finite Chevalley groups and periodic linear groups,” Sib. Math. J. 24 (6), 26–35 (1983) [Sib. Math. J. 24 (6), 843–851 (1983)].zbMATHGoogle Scholar
  4. 4.
    B. Hartley and G. Shute, “Monomorphisms and direct limits of finite groups of Lie type,” Quart. J. Math. Oxford Ser. (2) 35 (137), 49–71 (1984).MathSciNetzbMATHGoogle Scholar
  5. 5.
    S. Thomas, “The classification of the simple periodic linear groups,” Arch. Math. (Basel) 41 (2), 103–116 (1983).MathSciNetzbMATHGoogle Scholar
  6. 6.
    M. J. Larsen and R. Pink, “Finite subgroups of algebraic groups,” J. Amer. Math. Soc. 24 (4), 1105–1158 (2011).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. K. Shlepkin, “On some periodic groups saturated by finite simple groups,” Mat. Tr. 1 (1), 129–138 (1998) [Sib. Adv. in Math. 9 (2), 100–108 (1999)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. G. Rubashkin and K. A. Filippov, “Periodic groups saturated with the groups L 2(p n),” Sib. Math. J. 46 (6), 1388–1392 (2005) [Sib. Math. J. 46 (6), 1119–1122 (2005)].zbMATHGoogle Scholar
  9. 9.
    D. V. Lytkina and A. A. Shlepkin, “Periodic groups saturated with finite simple groups of types U 3 and L 3,” Algebra and Logic 55 (4), 441–448 (2016) [Algebra and Logic 55 (4), 289–294 (2016)].MathSciNetGoogle Scholar
  10. 10.
    K. A. Filippov, Groups Saturated with Finite Non-Abelian Simple Groups and Their Extensions, Cand. Sci. (Phys.–Math.) Dissertation (Krasnoyarsk, 2005) [in Russian].Google Scholar
  11. 11.
    K. A. Filippov, “On periodic groups saturated by finite simple groups,” Sib. Math. J. 53(2), 430–438 (2012) [Sib. Math. J. 53 (2), 345–351 (2012)].MathSciNetGoogle Scholar
  12. 12.
    D. Gorenstein, Finite Groups (Chelsea Publ., New York, 1980).zbMATHGoogle Scholar
  13. 13.
    J. H. Conway, R.T. Curtis, S. P. Norton, R.A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Group (Clarendon Press, Oxford, 1985).zbMATHGoogle Scholar
  14. 14.
    D. Gorenstein and K. Harada, “Finite simple groups of low 2-rank and the families G 2(q), D42, q odd,” Bull. Amer. Math. Soc. 77 (6), 829–862 (1971).MathSciNetzbMATHGoogle Scholar
  15. 15.
    J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, in London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2013), Vol. 407.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingP. R. China
  2. 2.Siberian State University of Telecommunications and Information SciencesNovosibirskRussia
  3. 3.Sobolev Institute of MathematicsSiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations